- 无标题文档

中文题名:

 双层箱体人字齿行星减速器的动态特性及隔振性能研究    

姓名:

 杨杰    

学号:

 BX1805516    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080203    

学科名称:

 工学 - 机械工程 - 机械设计及理论    

学生类型:

 博士    

学位:

 工学博士    

入学年份:

 2018    

学校:

 南京航空航天大学    

院系:

 机电学院    

专业:

 机械工程    

第一导师姓名:

 朱如鹏    

第一导师单位:

 机电学院    

完成日期:

 2023-04-17    

答辩日期:

 2023-06-01    

外文题名:

 

Dynamic characteristics and vibration isolation performance of double-layer casing herringbone planetary gearbox

    

中文关键词:

 双层箱体齿轮减速器 ; 行星齿轮传动系统 ; 隔振 ; 动力学 ; 滑动轴承     

外文关键词:

 Double-layer gearbox casing ; planetary gear system ; vibration isolator ; dynamic ; journal bearing     

中文摘要:

齿轮减速器在船舶推进系统中是不可或缺的传动装置,其高可靠性和良好性能是确保船舶稳定高效航行的关键。然而,齿轮减速器易产生振动噪声,其过度振动可能会导致设备故障、增加水下噪声、危及舰船安全性及降低自身隐身性。为此,隔振式双层箱体行星齿轮减速器被用来以减少从齿轮传动系统传递到外层箱体的振动能量,从而达到隔振降噪效果。本文以该类型的隔振式双层箱体人字齿行星减速器为研究对象,研究了计入滑动轴承动态特性、隔振元件、时变啮合刚度、齿轮箱体柔性等因素的人字齿行星减速器刚柔耦合动力学建模方法,分析了人字齿行星减速器的动态特性和隔振性能,探索了降低双层箱体人字齿行星减速器振动噪声的优化设计方法。主要研究工作如下:

(1)开展了滑动轴承支撑的人字齿行星减速器刚柔耦合动力学建模与分析研究。基于多重多级子结构法建立人字齿行星齿轮箱体的柔性缩聚动力学模型,采用有限差分法求解滑动轴承的动态特性系数,并通过二分法获得行星轮轴承的偏心距,将其作为行星轮安装误差,引入到滑动轴承支撑的人字齿行星减速器刚柔耦合动力学模型。通过与人字齿行星减速器箱体的模态试验、有限元仿真的固有特性对比分析,验证了柔性缩聚动力学模型能够有效地预测人字齿行星齿轮箱体的动力学特性。此外,计算的滑动轴承刚度和阻尼与相关文献中计算结果相近,验证了齿轮减速器刚柔耦合动力学模型中的滑动轴承的动态特性系数有效性。

(2)开展了滑动轴承支撑的人字齿行星减速器动态特性分析研究。依据行星齿轮系的固有频率重根数和振型特征,分析了滑动轴承刚度参数对人字齿行星齿轮传动系统的固有特性影响。分别在非耦合与耦合齿轮箱体中,开展运行工况和滑动轴承参数对人字齿行星减速器的动力学特性的影响研究。结果表明:滑动轴承刚度参数的不对称性和耦合特性会影响系统的固有频率重根数、频率值及对应的振动特征;啮合力动载荷系数随系统负载转矩增大而迅速减小,然后趋于平稳,而轴承承载力与此情况相反;啮合力动载荷系数和轴承承载力与滑动轴承宽径比呈正相关,与滑动轴承半径间隙呈负相关;相较于未耦合齿轮箱体,耦合箱体对系统振动特性影响更为显著。搭建了滑动轴承支撑的人字齿行星减速器试验平台,验证了所建立的齿轮减速器刚柔耦合动力学模型的可靠性。

(3)开展了双层箱体人字齿行星减速器的动力学建模及隔振特性研究。基于力学性能压缩试验和参数分离识别方法,获得隔振元件刚度和阻尼,并将其引入到双层箱体人字齿行星减速器的箱体柔性缩聚动力学模型。通过与人字齿行星减速器箱体的有限元仿真获得的模态特性对比分析,发现柔性缩聚动力学模型的模态特性与有限元仿真的基本一致,从而验证了柔性缩聚动力学模型有效性。采用广义弹性力能量解耦法分析了双层箱体人字齿行星减速器的箱体模态耦合振动机理和模态贡献度,结果表明双层箱体人字齿行星减速器的箱体在平移方向的模态解耦性较好,且模态贡献度主要以前六阶次为主导。接着,建立双层箱体人字齿行星减速器的刚柔耦合动力学模型,分析隔振元件参数对人字齿行星减速器动态特性的影响规律,结果表明隔振元件参数对人字齿行星传动系统的动载荷影响较小,且随着啮合频率的变化,双层箱体人字齿行星减速器表现出不同的隔振性能。基于滑动轴承支撑的人字齿行星减速器试验平台,换装双层箱体人字齿行星减速器试验件,评估了在不同负载扭矩和输入速度下双层箱体人字齿行星减速器的隔振性能,结果表明行星齿轮减速器隔振性能与负载扭矩呈负相关,而与输入转速呈现不单调的关系。此外,通过试验与仿真的振级落差对比分析,验证了双层箱体人字齿行星减速器刚柔耦合系统动力学模型的有效性。

(4)开展了双层箱体人字齿行星减速器参数灵敏度分析与隔振优化研究。应用全局参数灵敏度分析法,确定影响双层箱体人字齿行星减速器隔振性能的敏感参数,并分析这些参数对行星齿轮减速器隔振性能的影响,结果表明双层箱体人字齿行星减速器隔振性能对隔振元件参数的灵敏度指数的影响较大,且与隔振元件参数呈现非单调的复杂关系。为了改善齿轮减速器的隔振性能,以隔振元件参数为设计变量,采用非支配排序遗传算法II对齿轮减速器的隔振性能进行多目标优化以获得最优前沿解集,结合熵权-优劣解距离法从最优前沿解集中筛选出最优方案。通过优化,双层箱体人字齿行星减速器的模态解耦率和振级落差均有提高。

外文摘要:

Gearbox is an indispensable component of the marine propulsion system, offering a reliable and efficient transmission. Its outstanding reliability and performance play a vital role in ensuring the stability and effective of ship navigation. However, the gearbox is prone to producing vibration noise, and excessive levels of vibration can lead to equipment failures, increased underwater noise, endanger of ship safety, and weakening of ship stealth. To this end, a vibration-isolated double-layer planetary gearbox is utilized to reduce the amount of vibration energy transferred from the gear transmission system to the outer casing, achieving effective vibration reduction. This type of vibration-isolated double-layer herringbone planetary gearbox is the focus of the research. The study aims to investigate the rigid-flexible coupling dynamics model method of the double-layer herringbone planetary gearbox, considering the dynamic characteristics of journal bearings, vibration isolators, time-varying mesh stiffness, and casing flexibility. The dynamic characteristics and vibration isolation performances of the herringbone planetary gearbox is analyzed, and an optimization method for reducing the vibration noise of the double-layer herringbone planetary gearbox is explored. The main research works are as following:

(1) The present study describes the modeling and analysis of the rigid-flexible coupling dynamics of the double-layer casing herringbone planetary gearbox. A multilevel substructure method is utilized to establish a flexible condensed dynamic model of the herringbone planetary gearbox casing. The dynamic characteristic coefficient of the journal bearing is solved by using the finite difference method.  The eccentricity of the planetary bearing is obtained by dichotomy and taken as the planet's installation error, which is coupled to form the rigid-flexible coupling dynamics model of the herringbone planetary gearbox that is supported by journal bearings. The investigation of the natural characteristics of the flexible condensed dynamic model for the herringbone planetary gearbox casing reveals that the relative error between the flexible condensed dynamic model and the results of the modal test and finite element simulation is quite small. This suggests that the flexible condensed dynamic model can effectively predict the dynamic characteristics of the herringbone planetary gearbox. Besides, the calculated stiffness and damping of the journal bearing a are in line with those previously calculated in the literature, which validates the dynamic characteristic coefficient of the journal bearing in the rigid-flexible coupling dynamic model of the gearbox.

(2) The present study analyzes the dynamic characteristics of a double-layer casing herringbone planetary gearbox. The effect of journal bearing stiffness parameters on the natural characteristics of the herringbone planetary gear transmission system is examined based on the natural frequency multiplicity and vibration mode characteristics of the planetary gear train. The effects of operating conditions and bearing parameters on the dynamic characteristics of the herringbone planetary gearbox is also investigated in both non-coupling and coupling gearbox casing. The results showed that the asymmetry and coupling characteristics of the bearing stiffness parameters affect the number of natural frequency multiplicities, the corresponding frequency values and vibration characteristics of the system. Additionally, the dynamic load coefficient of the meshing force decreases rapidly with the increase of the system load torque and then becomes stable, while the bearing capacity is on the contrary. The width-diameter ratio of planet bearing is positively correlated with the dynamic load coefficient of meshing force and bearing capacity, whereas the radial clearance of the planet bearing is negatively correlated. Furthermore, it is observed that the coupling gearbox casing has a greater influence on the vibration characteristics of the system than the uncoupling gearbox housing. To verify the reliability of the rigid-flexible coupling dynamic model of the gearbox, a test platform of the herringbone planetary gearbox supported by journal bearings is built.

(3) The present study conducts a dynamic modeling and analysis of the vibration isolation characteristics of a double-layer casing herringbone planetary gearbox. The stiffness and damping of the vibration isolator are obtained by a compression test of mechanical properties and the parameter separation identification method. These values are then incorporated into the flexible condensed dynamic model of the double-layer herringbone planetary gearbox casing, and the natural frequency of the model is compared with that of a finite element simulation analysis. Results show a slight relative error, indicating the efficiency of the flexible condensed dynamic model.  Additionally, the first six-order modular vibration of the gearbox casing is found to be the independent vibration of the internal shell, which validates the effectiveness of the flexible condensed dynamic model. The modal vibration coupling mechanism of the double-layer herringbone planetary gearbox casing is discussed using the generalized elastic force energy decoupling method. Modal decoupling rate, frequency response function, and modal contribution are used to analyze the nature characteristics of the gearbox casing. Results show the modal decoupling rate is good in the translation direction, and modal contribution is mainly dominated by the previous sixth orders. The rigid-flexible coupling dynamics model of the double-layer herringbone planetary gearbox is established, and its influence on the dynamic characteristics of the gearbox is analyzed. Results show that the dynamic load of the planetary transmission system is weakly affected by the vibration isolator parameters. Moreover, the double-layer herringbone planetary gearbox exhibits different vibration isolation performance with the changes in the meshing frequency. To evaluate the vibration isolation performance under different load torques and input speeds, a test part of the double-layer herringbone planetary gearbox is processed and assembled on the test platform of herringbone planetary gearbox supported by journal bearings. The gearbox underwent various tests, and results show that the vibration isolation performance of the gearbox is negatively correlated with the load torque but not monotonic with the input speed. Finally, a comparative analysis of the measured vibration levels during the experiment and those predicted by simulation indicated the effectiveness of rigid-flexible coupling system dynamic model of the double-layer herringbone planetary gearbox.

(4) The present study involves conducting a parameter sensitivity analysis and vibration isolation optimization of the double-layer herringbone planetary gearbox. The global parameter sensitivity analysis method is employed to determine the sensitive parameters that impact the vibration isolation performance of the double-layer herringbone planetary gearbox. The effect of these parameters on the vibration isolation performance of the planetary gearbox is investigated, revealing a complex non-monotonic relationship between the vibration isolation performance of the double-layer herringbone planetary gearbox and the vibration isolator parameters. To enhance the vibration isolation performance of the gearbox, a multi-objective optimization of the vibration isolation performance is carried out by considering the parameters of vibration isolators as design variables, using the Non-dominated Sorting Genetic Algorithm II (NSGA-II).  After optimization, the entropy weight-TOPSIS method is used to screen the optimal solution.   As a result of this optimization, there have been significant improvements in both the modal decoupling rate and the vibration levels of the double-layer herringbone planetary gearbox.

参考文献:

[1]马召召, 周瑞平, 杨庆超, 等. 船用主被动混合隔振器的自适应控制研究[J]. 船舶力学, 2023, 27(03): 446-455.

[2]王晓侠, 刘见华. 舰船水下辐射噪声的控制分析 [J]. 船舶, 2013, 24(01): 36-39.

[3]沈建平, 周文建, 童宗鹏. 船舶传动装置振动控制技术研究现状与发展趋势[J]. 舰船科学技术, 2010, 32(08): 7-12.

[4]Yang J, Dai G, Zhu R, et al. How does vibration isolator affect marine double-layer gearbox case? A dynamic response analysis[J]. Journal of Vibration Engineering & Technologies, 2021, 9(8): 2169-2181.

[5]栾健, 张健中, 万新斌. 行星齿轮减速器隔振式双层箱体支撑刚度优化研究[J]. 热能动力工程, 2019, 34(1): 103-112.

[6]王梦琪, 戴光昊, 张晓旭, 等. 一种带隔振系统的圆柱式双层壳体结构[P]. CN209454966U, 2019.

[7]范宗瑞, 霍肇波, 张建, 等. 基于相位调谐的船用两级行星传动系统振动研究[J]. 热能动力工程, 2023, 38(02): 131-136.

[8]莫文超, 焦映厚, 陈照波, 等. 人字齿行星传动系统非线性动力学特性分析[J]. 哈尔滨工程大学学报, 2019, 40(10): 1760-1766.

[9]张丽娜. 功率分流式行星齿轮传动系统建模及动态特性研究[D]: 山东大学, 2017.

[10]卜忠红, 刘更, 吴立言. 滑动轴承支承人字齿轮行星传动固有特性分析[J]. 机械工程学报, 2011, 47(1): 80-88.

[11]Zhang C, Wei J, Wang F, et al. Dynamic model and load sharing performance of planetary gear system with journal bearing[J]. Mechanism and Machine Theory, 2020, 151: 103898.

[12]汤晓波. 封闭差动齿轮减速器箱体振动特性分析研究[D]: 南京航空航天大学, 2020.

[13]吕振华, 范让林, 冯振东. 汽车动力总成隔振悬置布置的设计思想论析[J]. 内燃机工程, 2004, (03): 37-43.

[14]李润方, 王建军. 齿轮系统动力学-振动、冲击、噪声[M]. 北京: 科学出版社, 1999.

[15]刘燕德, 王观田, 王均刚, 等. 行星齿轮均载传动的研究进展 [J]. 机械工程与自动化, 2017, (06): 217-219.

[16]刘更, 南咪咪, 刘岚, 等. 摩擦对齿轮振动噪声影响的研究进展[J]. 振动与冲击, 2018, 37(04): 35-41+48.

[17]朱石坚, 何琳. 船舶减振降噪技术与工程设计[M]. 北京: 科学出版社, 2002.

[18]于放, 王明为. 舰船减速器齿轮装置的加工与设计[M]. 北京: 国防工业出版社, 2009.

[19]葛仁超, 张猛, 戴光昊, 等. 舰船齿轮传动装置的减振降噪技术分析 [J]. 舰船科学技术, 2018, 40(23): 114-118.

[20]王晋鹏, 常山, 刘更, 等. 船舶齿轮传动装置箱体振动噪声分析与控制研究进展[J]. 船舶力学, 2019, 23(08): 1007-1019.

[21]Ploger D F, Fischer C, Rinderknecht S. Linking the modulation of gear mesh vibration in planetary gearboxes to manufacturing deviations[J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 155.

[22]Kahraman A, Singh R. Non-linear dynamics of a spur gear pair[J]. Journal of Sound and Vibration, 1990, 142(1): 49-75.

[23]Kahraman A, Singh R. Non-linear dynamics of a geared rotor-bearing system with multiple clearances[J]. Journal of Sound Vibration, 1991, 144(3): 469-506.

[24]Kahraman A, Singh R. Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system[J]. Journal of Sound Vibration, 1991, 146(1): 135-156.

[25]王三民, 沈允文, 董海军. 含摩擦和间隙直齿轮副的混沌与分叉研究[J]. 机械工程学报, 2002, (09): 8-11.

[26]唐进元, 陈思雨, 钟掘. 一种改进的齿轮非线性动力学模型[J]. 工程力学, 2008, (01): 217-223.

[27]Moradi H, Salarieh H. Analysis of nonlinear oscillations in spur gear pairs with approximated modelling of backlash nonlinearity[J]. Mechanism and Machine Theory, 2012, 51: 14-31.

[28]Zhang K, Zhang L, Shao Y, et al. Relationship between the engaging force of planetary gear train and the position-correlated modal properties[J]. 2019, 2019(13): 284-292.

[29]Wang S, Huo M, Zhang C, et al. Effect of mesh phase on wave vibration of spur planetary ring gear[J]. European Journal of Mechanics - A/Solids, 2011, 30(6): 820-827.

[30]Lin J, Parker R G. Planetary gear parametric instability caused by mesh stiffness variation[J]. Journal of Sound and Vibration, 2002, 249(1): 129-145.

[31]朱增宝, 朱如鹏. 封闭差动行星齿轮传动系统啮合刚度振动不稳定性[J]. 机械工程学报, 2016, 52(19): 25-33.

[32]林何, 王三民, 董金城. 内、外啮合刚度激励下人字齿行星齿轮传动振动特性[J]. 西北工业大学学报, 2016, 34(05): 893-899.

[33]Xiang L, Gao N, Hu A. Dynamic analysis of a planetary gear system with multiple nonlinear parameters[J]. Journal of Computational and Applied Mathematics, 2018, 327: 325-340.

[34]王成, 高常青, 崔焕勇. 基于啮合特性的人字齿轮动力学建模与分析[J]. 中南大学学报(自然科学版), 2012, 43(08): 3019-3024.

[35]Liu C, Qin D, Liao Y. Dynamic Model of Variable Speed Process for Herringbone Gears Including Friction Calculated by Variable Friction Coefficient[J]. Journal of Mechanical Design, 2014, 136(4): 41006.

[36]陆凤霞, 王浩飞, 朱如鹏, 等. 基于齿面摩擦的人字齿轮副动力学特性分析[J]. 振动与冲击, 2016, 35(09): 204-212.

[37]常乐浩, 贺朝霞, 刘更. 平行轴齿轮传动系统动力学建模的有限单元法[J]. 振动与冲击, 2016, 35(20): 47-53.

[38]袁冰, 常山, 刘更, 等. 考虑齿距累积误差的人字齿轮系统动态特性分析[J]. 振动与冲击, 2020, 39(03): 120-126.

[39]袁冰, 常山, 刘更, 等. 大齿宽齿轮耦合转子系统准静态接触分析及动态特性[J]. 机械工程学报, 2020, 56(03): 96-105.

[40]常乐浩, 袁冰, 宋文, 等. 齿轮副非线性接触特性与动力学耦合分析方法[J]. 西安交通大学学报, 2022, (10): 1-9.

[41]陆春荣, 李以农, 窦作成, 等. 齿轮-转子-轴承系统弯扭耦合非线性振动特性研究[J]. 振动工程学报, 2018, 31(02): 238-244.

[42]Lin J. Analytical investigation of planetary gear dynamics[D]. Columbus: The Ohio State University, 2000.

[43]Walha L, Fakhfakh T, Haddar M J M, et al. Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash[J]. Mechanism and Machine Theory, 2009, 44(5): 1058-1069.

[44]朱恩涌, 巫世晶, 王晓笋, 等. 含摩擦力的行星齿轮传动系统非线性动力学模型[J]. 振动与冲击, 2010, 29(08): 217-220+236+254.

[45]Shuai M, Ting Z, Guo-guang J, et al. Analytical investigation on load sharing characteristics of herringbone planetary gear train with flexible support and floating sun gear[J]. Mechanism and Machine Theory, 2020, 144: 103670.

[46]Wang C, Parker R G. Nonlinear dynamics of lumped-parameter planetary gears with general mesh phasing[J]. Journal of Sound and Vibration, 2022, 523: 116682.

[47]Mo S, Zhang Y, Wu Q, et al. Load sharing behavior analysis method of wind turbine gearbox in consideration of multiple-errors[J]. Renewable Energy, 2016, 97: 481-491.

[48]Cooley C G, Parker R G. Eigenvalue sensitivity and veering in gyroscopic systems with application to high-speed planetary gears[J]. European Journal of Mechanics - A/Solids, 2018, 67: 123-136.

[49]Wang C, Parker R G. Modal properties and parametrically excited vibrations of spinning epicyclic/planetary gears with a deformable ring[J]. Journal of Sound and Vibration, 2021, 494: 115828.

[50]Cheon G J, Parker R G. Influence of manufacturing errors on the dynamic characteristics of planetary gear systems[J]. KSME international journal, 2004, 18(4): 606-621.

[51]Zhai H, Zhu C, Song C, et al. Influences of carrier assembly errors on the dynamic characteristics for wind turbine gearbox[J]. Mechanism and Machine Theory, 2016, 103: 138-147.

[52]朱增宝, 朱如鹏, 鲍和云, 等. 偏心与齿频误差对封闭差动人字齿轮传动系统动态均载特性的影响分析[J]. 航空动力学报, 2011, 26(11): 2601-2609.

[53]朱增宝, 朱如鹏, 鲍和云, 等. 偏心与安装误差对封闭差动人字齿轮传动系统静力学均载特性的影响[J]. 华南理工大学学报(自然科学版), 2011, 39(08): 19-25.

[54]朱增宝, 朱如鹏, 李应生, 等. 安装误差对封闭差动人字齿轮传动系统动态均载特性的影响[J]. 机械工程学报, 2012, 48(03): 16-24.

[55]Tatar A, Schwingshackl C W, Friswell M I. Modal sensitivity of three-dimensional planetary geared rotor systems to planet gear parameters[J]. Applied mathematical modeling, 2023, 113: 309-332.

[56]胡升阳, 方宗德, 徐颖强, 等. 内齿圈结构类型柔性及均载与动载特性对比分析[J]. 重庆大学学报, 2021, 44(12): 1-14.

[57]魏静, 史磊, 张爱强, 等. 飞行环境非惯性系下行星齿轮传动系统耦合动力学建模及其动态特性[J]. 机械工程学报, 2019, 55(23): 162-172.

[58]Hammami A, Fernandez Del Rincon A, Chaari F, et al. Effects of variable loading conditions on the dynamic behaviour of planetary gear with power recirculation[J]. Measurement, 2016, 94: 306-315.

[59]Yang H, Li X, Xu J, et al. Dynamic characteristics analysis of planetary gear system with internal and external excitation under turbulent wind load[J]. Science Progress, 2021, 104(3): 00368504211035604.

[60]林何, 王三民, Matthias R, 等. 齿轮-轴承系统非线性混沌控制参数摄动与轨道偏差分析[J]. 振动与冲击, 2020, 39(15): 250-256+265.

[61]林何, 屈文宽, Raatsch M, 等. 齿轮-轴承系统非线性振动混沌吸引子周期轨道控制[J]. 振动与冲击, 2020, 39(13): 1-6+15.

[62]李朝峰, 周世华, 刘文明, 等. 齿轮-转子-滚动轴承传动系统的弯扭耦合振动[J]. 航空动力学报, 2014, 29(07): 1543-1555.

[63]李同杰, 靳广虎, 朱如鹏, 等. 高重合度齿轮传动系统的振动参数稳定性[J]. 航空动力学报, 2017, 32(10): 2456-2466.

[64]任薇, 靳广虎, 朱如鹏, 等. 时变支承刚度对分流传动系统振动特性的影响 [J]. 南京航空航天大学学报, 2016, 48(06): 808-814.

[65]Liu G, Hong J, Parker R G. Influence of simultaneous time-varying bearing and tooth mesh stiffness fluctuations on spur gear pair vibration[J]. Nonlinear Dynamics, 2019, 97(2): 1403-1424.

[66]王梓. 基于滚动轴承激励的齿轮系统非线性动力学研究[D]: 重庆大学, 2020.

[67]Lund J W. The Stability of an Elastic Rotor in Journal Bearings With Flexible, Damped Supports[J]. Journal of Applied Mechanics, 1965, 32(4): 911-920.

[68]虞烈 刘, 王为民. 轴承转子系统动力学-基础篇(上册)[M]. 西安: 西安交通大学出版社, 2016.

[69]Yu H, Adams M L. The linear model for rotor-dynamic properties of journal bearings and seals with combined radial and misalignment motions[J]. Journal of Sound and Vibration, 1989, 131(3): 367-378.

[70]Bu Z, Liu G, Wu L. Modal analyses of herringbone planetary gear train with journal bearings[J]. Mechanism and Machine Theory, 2012, 54: 99-115.

[71]Sheng Z, Tang J, Chen S, et al. Modal Analysis of Double-Helical Planetary Gears With Numerical and Analytical Approach[J]. Journal of Dynamic Systems, Measurement, and Control, 2015, 137(4).

[72]Yang J, Yue Y, Zhu R, et al. Dynamic Characteristics of Encased Differential Gear Train with Journal Bearing[J]. Mathematical Problems in Engineering, 2020, 2020: 1-15.

[73]Capone G. Moti orbitali di un rotore rigido simmetrico su cuscinetti cilindrici lubrificati[J]. La Meccanica Italiana, 1986, 199: 37-46.

[74]Cui Y, Liu Z, Wang Y, et al. Nonlinear Dynamic of a Geared Rotor System With Nonlinear Oil Film Force and Nonlinear Mesh Force[J]. Journal of Vibration and Acoustics, 2012, 134: 041001.

[75]李同杰, 靳广虎, 鲍和云, 等. 滑动轴承-行星齿轮耦合系统非线性动力学特性研究[J]. 船舶力学, 2018, 22(04): 499-508.

[76]李同杰, 靳广虎, 朱如鹏, 等. 滑动轴承支撑下齿轮耦合转子系统弯扭耦合振动特性分析[J]. 中南大学学报(自然科学版), 2018, 49(03): 566-573.

[77]Liu Z, Liu Z, Zhao J, et al. Study on interactions between tooth backlash and journal bearing clearance nonlinearity in spur gear pair system[J]. Mechanism and Machine Theory, 2017, 107: 229-245.

[78]Liu Z, Liu Z, Yu X. Dynamic modeling and response of a spur planetary gear system with journal bearings under gravity effects[J]. Journal of Vibration and Control, 2017, 24: 107754631770787.

[79]Yin M, Chen G, su H. Theoretical and experimental studies on dynamics of double-helical gear system supported by journal bearings[J]. Advances in Mechanical Engineering, 2016, 8(5): 1-13.

[80]Shin D, Palazzolo A. Nonlinear analysis of a geared rotor system supported by fluid film journal bearings[J]. Journal of Sound and Vibration, 2020, 475(9): 115269.

[81]Yang J, Zhu R, Yue Y, et al. Nonlinear analysis of herringbone gear rotor system based on the surface waviness excitation of journal bearing[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(2): 54.

[82]Dakel M, Baguet S, Dufour R. Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings[J]. Journal of Sound and Vibration, 2014, 333(10): 2774-2799.

[83]魏维, 郭文勇, 吴新跃, 等. 考虑滑动轴承时变动力学参数的齿轮系统建模及分析[J]. 振动与冲击, 2019, 38(23): 246-252.

[84]Zhu C C, Lu B, Song C S, et al. Dynamic analysis of a heavy duty marine gearbox with gear mesh coupling[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996, 2009, 223(203-210): 2531-2547.

[85]朱才朝, 陆波, 徐向阳, 等. 大功率船用齿轮箱传动系统和结构系统耦合特性分析[J]. 船舶力学, 2011, 15(11): 1315-1321.

[86]林腾蛟, 何泽银, 钟声, 等. 船用齿轮箱多体动力学仿真及声振耦合分析[J]. 湖南大学学报(自然科学版), 2015, 42(02): 22-28.

[87]Guo Y, Eritenel T, Ericson T M, et al. Vibro-acoustic propagation of gear dynamics in a gear-bearing-housing system[J]. Journal of Sound and Vibration, 2014, 333(22): 5762-5785.

[88]周建星, 孙文磊. 单级人字齿轮减速器振动噪声分析方法研究 [J]. 振动与冲击, 2014, 33(09): 66-71.

[89]Wang J, Li P, Song S. Mechanical analysis methods of cantilever gearbox housing[J]. Journal of Shanghai Jiaotong University (Science), 2021.

[90]林腾蛟, 宋建军, 孟令宽, 等. 风电增速齿轮箱动力学性能优化方法[J]. 重庆大学学报, 2016, 39(04): 16-23.

[91]王曾. 齿轮箱振动噪声分析及其优化研究[D]: 哈尔滨工程大学, 2018.

[92]徐新波. 齿轮箱体振动分析及减振降噪结构优化研究[D]: 哈尔滨理工大学, 2021.

[93]Kumar A, Jaiswal H, Patil P, et al. Parametric optimization of vibrating heavy vehicle medium duty transmission gearbox housing using response surface method[J]. International Journal of Vehicle Structures, 2017, 9(3): 149-153.

[94]张栋林. 基于封闭差动轮系的共轴直升机主减速器动态特性研究[D]. 南京: 南京航空航天大学, 2021.

[95]Lu W, Zhang Y, Cheng H, et al. Research on dynamic behavior of multistage gears-bearings and box coupling system[J]. Measurement, 2020, 150: 107096.

[96]Duan T, Wei J, Zhang A, et al. Transmission error investigation of gearbox using rigid-flexible coupling dynamic model: theoretical analysis and experiments[J]. Mechanism and Machine Theory, 2021, 157: 104213.

[97]Yang J, Yang L, Zhu R, et al. Effects of vibration isolator on compound planetary gear train with marine twin-layer gearbox case: a dynamic load analysis[J]. Journal of Vibration Engineering & Technologies, 2021, 9(5): 767-780.

[98]Lai J, Liu Y, Xu X, et al. Dynamic modeling and analysis of Ravigneaux planetary gear set with unloaded floating ring gear[J]. Mechanism and Machine Theory, 2022, 170: 104696.

[99]魏静, 周仁弘毅, 张爱强, 等. 复杂异型机匣高效高精度动力学建模及评价方法[J]. 航空动力学报, 2021, 36(07): 1520-1532.

[100]魏静, 姜东, 张爱强, 等. 时变位姿下行星齿轮传动系统动应力计算模型及其参数影响研究[J]. 机械工程学报, 2021, 57(21): 150-159.

[101]赵宇豪, 魏静, 张世界, 等. 结构柔性对大型风电机组齿轮传动系统动态响应的影响分析[J]. 太阳能学报, 2021, 42(12): 174-182.

[102]谢溪凌, 董广明, 林枫, 等. 船舶动力与传动装置振动控制技术发展研究[J]. 中国工程科学, 2022, 24(06): 193-202.

[103]Lothar Cremer, Heckl M. Structure-borne sound: structural vibrations and sound radiation at audio frequencies[M]. Berlin: Springer Science & Business Media, 2013.

[104]Ungar E E. Transmission of plate flexural waves through reinforcing beams: dynamic stress concentrations[J]. The Journal of the Acoustical Society of America, 1961, 33(5): 633-639.

[105]桂洪斌. 材料参数对阻振质块隔振效果的影响[C]. 第十届船舶水下噪声学术讨论会, 中国烟台, F, 2005.

[106]刘见华, 金咸定, 李喆. 多个阻振质量阻抑结构声的传递 [J]. 上海交通大学学报, 2003, (08): 1205-1208.

[107]Yi T, Ou D, Ouyang G. Design and experimental analysis of a rigid block isolator[J]. Journal of Vibration and Shock, 2008, 201(1): 169-173+192.

[108]程倩. 船用齿轮箱振动特性影响分析与减振技术研究[D]: 重庆大学, 2018.

[109]聂振华. 舰船齿轮箱支撑基座的隔振性能分析及改进技术研究[D]: 哈尔滨工业大学, 2014.

[110]李嘉兴. 面向舰船设备基座隔振的梁板组合结构振动特性研究[D]: 哈尔滨工业大学, 2018.

[111]王晋鹏, 常山, 王鑫, 等. 计入基础结构导纳特性的船舶齿轮传动装置振动噪声分析方法研究[J]. 西北工业大学学报, 2017, 35(01): 90-97.

[112]常山. 船舶大功率齿轮传动装置的技术发展现状与展望[J]. 舰船科学技术, 2010, 32(07): 17-22+45.

[113]McGoldrick R T. Ship vibration [R]: David Taylor Model Basin Washington DC, 1960.

[114]戴光昊, 蔡庆义, 吴樾, 等. 一种用于船用齿轮箱的双硬弹性安装结构[P], CN209294373U, 2019.

[115]He L, Xu W, Bu W, et al. Dynamic analysis and design of air spring mounting system for marine propulsion system[J]. Journal of Sound and Vibration, 2014, 333(20): 4912-4929.

[116]Kurtze L, Heger M, Heider M, et al. Vibration isolation of large machinery[J]. MTZ industrial, 2017, 7(1): 58-63.

[117]张懿时, 童宗鹏, 周炎, 等. 船舶齿轮箱硬弹性隔振技术研究[J]. 噪声与振动控制, 2013, 33(03): 153-155.

[118]周瑞, 赵大鹏, 李宁, 等. 齿轮箱弹性隔振时的推进装置模态分析研究[J]. 船舶力学, 2017, 21(08): 1018-1024.

[119]沈建平, 孙少龙. 基于高速机的船舶低振动推进机组设计及试验[J]. 噪声与振动控制, 2021, 41(01): 140-144+183.

[120]任亚峰, 刘更, 王海伟, 等. 隔振器布置方式对船舶齿轮系统振动传递特性的影响[J]. 机械传动, 2021, 45(07): 18-23+41.

[121]Zhou J, Liu G, Wu L. Vibration analysis of marine planetary reducer with elastic support[J]. Journal of Harbin Institute of Technology, 2012, (07): 102-106+112.

[122]Wang F, Lu Y, Lee H P, et al. Vibration and noise attenuation performance of compounded periodic struts for helicopter gearbox system[J]. Journal of Sound and Vibration, 2019, 458: 407-425.

[123]王风娇, 李明强, 彭海锋, 等. 用于直升机舱内降噪的新型径向周期撑杆研究[J]. 振动与冲击, 2023, 42(04): 286-294.

[124]Xiao W, Xu Z, Zhang F, et al. Effect of particle damping on high-power gear transmission with dynamic coupling for continuum and non-continuum[J]. Applied Acoustics, 2021, 173: 107724.

[125]叶林昌, 肖望强, 沈建平, 等. 基于粒子阻尼的动力装置基座减振优化设计研究[J]. 振动与冲击, 2021, 40(03): 40-47.

[126]田佳彬, 黄自杰, 王娟, 等. 基于粒子阻尼器的船舶推进轴系减振研究[J]. 振动与冲击, 2022, 41(24): 97-103+149.

[127]戴德沛. 阻尼减振降噪技术[M]. 西安: 西安交通大学出版社, 1986.

[128]戴光昊, 余晓辉, 尹逊民, 等. 阻尼支撑圈在齿轮箱中的应用[J]. 舰船科学技术, 2014, (9): 141-145.

[129]Shi D, Wang Q, Shi X. Optimization design method for constrained damping layer's noise reduction based on the Hoff sandwich plate theory; proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, F, 2014 [C]. Institute of Noise Control Engineering.

[130]Zhang T, Shi D, Zhuang Z. Research on vibration and acoustic radiation of planetary gearbox housing[C]. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, F, 2014.

[131]鄢条广. 舰船薄壁齿轮箱体的振动噪声特性及阻尼结构优化研究[D]: 哈尔滨工业大学, 2021.

[132]官欣. 内激励作用下船用齿轮箱减振降噪研究[D]: 哈尔滨工程大学, 2019.

[133]王睿, 张晓鹏, 亢战. 以动柔度为目标的结构阻尼材料层拓扑优化[J]. 振动与冲击, 2013, 32(22): 36-40.

[134]Kim S Y, Mechefske C K, Kim I Y. Optimal damping layout in a shell structure using topology optimization[J]. Journal of Sound Vibration, 2013, 332(12): 2873-2883.

[135]刘雨侬, 刘岚, 刘更, 等. 基于声学贡献量的减速箱阻尼材料布局方法 [J]. 西北工业大学学报, 2019, 37(04): 757-766.

[136]McFadden. Low frequency vibration generated by gear tooth impacts[J]. NDT International, 1985, 18(5): 279-282.

[137]Rebbechi B, Howard C, Hansen C. Active control of gearbox vibration[C]. Active Control of Sound and Vibration Conference, Blacksburg, Virginia,1999, (0): 295-304.

[138]Guan Y H, Lim T C, Steve Shepard W. Experimental study on active vibration control of a gearbox system[J]. Journal of Sound and Vibration, 2005, 282(3): 713-733.

[139]张锋. 基于压电作动器的齿轮传动系统振动主动控制及算法研究[D]: 重庆大学, 2013.

[140]Li Z, Wang H, Zhu R. Effect predictions of web active control on dynamic behaviors of face gear drives[J]. Journal of Low Frequency Noise Vibration and Active Control, 2019, 38(2): 753-764.

[141]Majumder G, Tiwari R. Application of active magnetic bearings in control and estimation of geared-rotor faults in high speed offset spur gear transmission system[J]. Mechanical Systems and Signal Processing, 2022, 176: 109113.

[142]胡航领, 何立东, 冯浩然. 磁流变阻尼器对齿轮系统减振降噪实验研究[J]. 机械科学与技术, 2017, 36(07): 991-997.

[143]Hoffmann F, Maier R, Jänker P, et al. Helicopter Interior Noise Reduction by Using Active Gearbox Struts[C].the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), Cambridge, F 8-10 May, 2006.

[144]Ma X, Lu Y, Wang F. Active structural acoustic control of helicopter interior multifrequency noise using input-output-based hybrid control[J]. Journal of Sound and Vibration, 2017, 405: 187-207.

[145]Pasco Y, Robin O, Bélanger P, et al. Multi-input multi-output feedforward control of multi-harmonic gearbox vibrations using parallel adaptive notch filters in the principal component space[J]. Journal of Sound and Vibration, 2011, 330(22): 5230-5244.

[146]任明可, 谢溪凌, 黄志伟, 等. 新型橡胶-电磁复合主被动隔振器研究[J]. 振动与冲击, 2021, 40(23): 32-37.

[147]方媛媛, 夏兆旺, Waters T P, 等. 船舶辅机浮筏半主动非线性隔振系统振动特性分析[J]. 船舶力学, 2019, 23(05): 583-590.

[148]王迎春, 马石, 李彦, 等. 主动控制技术在船舶振动噪声控制中的应用[J]. 海军工程大学学报, 2021, 33(04): 56-64+94.

[149]Zech P, Ploger D F, Rinderknecht S. Active control of planetary gearbox vibration using phase-exact and narrowband simultaneous equations adaptation without explicitly identified secondary path models[J]. Mechanical Systems and Signal Processing, 2019, 120: 234-251.

[150]Ploger D, Zech P, Rinderknecht S. Experimental identification of high-frequency gear mesh vibrations in a planetary gearbox[C]. International Conference on Noise and Vibration Engineering (ISMA) / International Conference on Uncertainty in Structural Dynamics (USD), Leuven, BELGIUM, F Sep 19-21, 2016.

[151]Lund J W. The stability of an elastic rotor in journal bearings with flexible, damped supports[J]. Journal of Applied Mechnics, 1965, 32(4): 911-920.

[152]国家标准局. GB3480-83渐开线圆柱齿轮承载能力计算方法[S]. 北京: 国家标准局, 1983.

[153]Maatar M, Velex P. An analytical expression for the time-varying contact length in perfect cylindrical gears: Some possible applications in gear dynamics[J]. Journal of Mechanical Design, 1996, 118(4): 586-589.

[154]Parker R G, Lin J. Mesh phasing relationships in planetary and epicyclic gears[J]. Journal of Mechanical Design, 2004, 126(2): 365-370.

[155]刘岚, 赵晨晴, 任亚峰, 等. 齿轮箱全耦合系统动力学建模与箱体影响分析[J]. 哈尔滨工程大学学报, 2018, 39(03): 561-568.

[156]Ren Y, Chang S, Liu G, et al. Impedance synthesis based vibration analysis of geared transmission system[J]. Shock and Vibration, 2017, 2017: 1-14.

[157]胡金芳, 陈无畏, 叶先军. 计及弹性支撑的汽车动力总成悬置系统解耦研究[J]. 中国机械工程, 2012, 23(23): 2879-2885.

[158]宋世哲 董, 黄燕,徐昉晖,张伟,闫兵. 柔性双层隔振系统振动能量解耦方法及应用[J]. 西南交通大学学报, 2022, (1-8).

[159]Shangguan W-B, Liu X-A, Lv Z-P, et al. Design method of automotive powertrain mounting system based on vibration and noise limitations of vehicle level[J]. Mechanical Systems and Signal Processing, 2016, 76-77: 677-695.

[160]魏静, 周仁弘毅, 张爱强, 等. 复杂异型机匣高效高精度动力学建模及评价方法 [J]. 航空动力学报, 2021, 36(07): 1520-1532.

[161]栾健. 行星齿轮减速器隔振式双层箱体设计与动态特性研究[D]: 中国舰船研究院, 2018.

[162]朱海明. 直升机超临界尾传动系统动力学建模与振动特性研究[D]: 南京航空航天大学, 2021.

[163]范让林, 吕振华. 刚体-弹性支承系统振动解耦评价方法分析[J]. 工程力学, 2006, 23(7): 13-18.

[164]任志英, 尧杰程, 黄伟, 等. 金属橡胶-硅橡胶复合阻尼结构的减振性能 [J]. 振动与冲击, 2022, 41(24): 234-240.

[165]Someya T, Mitsui J, Esaki J, et al. Journal-bearing databook[M]. New York, 1989.

[166]Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary computation, 1994, 2(3 ): 221–248.

[167]Zitzler E, Deb K, Thiele L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results[J]. Evolutionary Computation, 2000, 8(2): 173-195.

[168]Fonseca C M, Fleming P J. Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation[J]. Systems,Man and Cybernetics,Part A:Systems and Humans,IEEE Transactions on, 1998, 28(1): 26-37.

[169]Deb K, Agrawal S, Pratap A, et al. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II[C]. Parallel Problem Solving from Nature VI, Berlin, Heidelberg, F, 2000.

[170]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms[C]. First International Conference on Genetic Algorithms & Their Applications, Carnegie-Mellon University Pittsburgh,PA, F, 1985.

[171]张庆, 葛东东, 何也能. 基于NSGA-Ⅱ和熵权TOPSIS法的注塑工艺参数多目标优化[J]. 塑料工业, 2022, 50(09): 95-100+197.

中图分类号:

 TH132    

馆藏号:

 2023-005-0458    

开放日期:

 2023-12-03    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式