中文题名: | 基于环境感知的无人机路径规划方法研究 |
姓名: | |
学号: | SX2007101 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0823Z1 |
学科名称: | 工学 - 交通运输工程 |
学生类型: | 硕士 |
学位: | 工学硕士 |
入学年份: | 2020 |
学校: | 南京航空航天大学 |
院系: | |
专业: | |
研究方向: | 航空器系统适航性验证 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2023-01-05 |
答辩日期: | 2023-03-17 |
外文题名: |
Research on UAV Path Planning Method based on Environmental Perception |
中文关键词: | |
外文关键词: | UAV ; path planning ; LiDAR ; point cloud segmentation ; DBSCAN ; RRT* |
中文摘要: |
无人机因具有灵活性强、小型化、可代替人工执行危险任务等特点,已在应急救援、农业植保、电力巡检、物流配送等民用领域得到广泛应用,引领智慧城市创新发展。主动和精准的 路径规划是保障无人机应用效果和提高作业效率的关键,面向环境的感知能力则是实现无人机 路径规划的前提,但传统方法在复杂城市超低空场景中显得无能为力。本文提出一种基于环境 感知的无人机路径规划方法,通过激光雷达点云障碍物检测实现无人机环境感知,为基于融合 改进 RRT*的无人机路径规划提供输入。该方法在弥补现有环境感知方法缺陷的同时,优化路 径规划策略。论文的具体研究内容和成果包括以下方面: (1)提出基于激光雷达点云分割的城市超低空障碍物检测方法。针对激光雷达原始点云数据存在的噪声和离群点,使用最小封闭超球体对原始点云数据进行离群检测,预优化处理提高 数据可信度;研究了一种基于密度的球柱变邻域空间聚类算法,根据每个点的三维位置信息确 定其合适的聚类邻域,即一种点云自适应聚类分割障碍物检测方法,有效抑制障碍物过分割、 漏检、聚类缺失等异常情况。 (2)提出基于方向包围盒(Oriented Bounding Box,OBB)的城市超低空障碍物模型构建 方法,为无人机的路径规划工作提供了构型空间。首先,为构建和简化障碍物模型以便获取其 三维尺寸和位置信息,使用 OBB 模型包裹聚类分割后的障碍物点云簇;其次,对于尺寸满足 一定条件的包围盒进行再分割优化处理,提高了包围盒内部空间占用率。然后,将无人机简化 为球模型,研究了一种基于胶囊体与 OBB 相交测试的无人机与障碍物的碰撞检测方法,用于 验证所规划路径是否满足无障碍约束。 (3)提出基于融合改进快速遍历随机树(Rapidly-exploring Random Tree Star,RRT*)的 无人机路径规划方法。分析了无人机快递末端配送、应急医疗物资配送、城市交通巡检 3 种典 型的城市超低空应用场景,并总结了 6 个无人机运动学约束条件;对 RRT*算法进行了融合改 进,将启发式搜索、引力偏移、检测限制、反向冗余剪枝 4 个策略依次加入随机点采样、新节 点扩展、碰撞检测和可行路径优化过程,弥补了传统 RRT*路径规划方法搜索效率低、优化迭 代慢的缺陷。 本文基于城市超低空场景下的激光雷达点云数据对上述方法进行了验证,试验结果表明:本文所提出的障碍物检测、障碍物模型构建以及无人机路径规划方法具有有效性和可靠性。 |
外文摘要: |
UAVs have been widely used in civil industries such as emergency rescue, agricultural plant protection, power inspection, and logistics distribution due to their flexibility, miniaturization, and ability to replace people to perform dangerous tasks, leading the innovative development of smart cities. Active and accurate path planning is the key to ensure the application effects and improve the operating efficiency of UAV. The ability of environmental perception is the premise of path planning, but traditional methods are powerless in the complex scene of ultra-low altitude in urban areas. This paper puts forward a path planning method of UAV. In the method, we use LiDAR to detect obstacles formed by point clouds, so as to realize the environmental perception of UAV and provide inputs for path planning based on the fused and improved RRT* algorithm. This method while make up for the defects of the existing environmental perception methods and optimize the path planning strategies. The specific research contents and achievements of this paper include the following aspects: (1)An obstacle detection method at ultra-low altitude in urban areas is proposed based on the LiDAR point cloud segmentation. Due to the existence of noise and outliers, the minimum closed hypersphere is used for outlier detection of the original point cloud data, that is, the reliability of the data is improved through pre-optimization processing. An improved DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm with spherical or cylindrical neighborhood is studied. The appropriate clustering neighborhood is determined according to the three-dimensional position information of each point. That’s an obstacle detection method based on adaptive clustering and segmentation of point cloud, which can effectively reduce the occurrence of abnormal situations such as excessive segmentation, missed detection, and cluster loss of obstacles. (2)An obstacle model construction method at ultra-low altitude in urban areas based on OBB (Oriented Bounding Box) is proposed which provides configuration space for UAV path planning. Firstly, in order to construct and simplify the obstacle model to obtain its three-dimensional size and position information, the OBB model is used to wrap the obstacle point cloud cluster. Secondly, the bounding box whose size meets certain conditions will be segmented again to improve its space occupancy rate. Then, the UAV is simplified into a ball model, and a collision detection method between the UAV and obstacles is studied based on the intersection test of capsule and OBB, which is used to verify whether the planned path meet the barrier-free constraints. (3)A UAV path planning method based on the fused and improved RRT* (Rapidly-exploring Random Tree Star) is proposed. In this secession, we analyze three typical application scenarios of UAV in ultra-low altitude of urban areas: express terminal distribution, emergency medical supplies distribution and urban traffic inspection, and summarize six kinematic constraints of UAV. In addition, we improve the RRT* algorithm by respectively adding four strategies of heuristic searching, gravitational offset, detection restriction and reverse redundancy pruning to the process of random point sampling, new node expansion, collision detection and feasible path optimization, which makes up for the defects of low search efficiency and slow optimization iteration of traditional RRT* path planning method. In this paper, the above methods are verified based on the LiDAR point cloud data in minimum altitude airspace of urban areas. The experimental results show that the methods of obstacle detection, obstacle model construction and UAV path planning proposed in this paper are effective and reliable. |
参考文献: |
[8]陈卫东, 张飞. 移动机器人的同步自定位与地图创建研究进展[J]. 控制理论与应用, 2005, 22(03): 445-460. [10]雷劲博, 朱雪耀, 李智, 等. 货运无人机感知与规避技术[C]. 2018惯性技术发展动态发展方向研讨会文集, 北京: 中国惯性技术学会, 2018: 136-139. [12]林琳, 刘志勇, 刘引川, 等. ADS-B的无人机冲突检测告警技术[J]. 遥感信息, 2017, 32(06): 33-37. [26]赵良玉, 朱叶青, 金瑞.多旋翼无人机单目V-SLAM研究综述[J].航空兵器, 2020, 27(2): 1-14. [36]刘娜, 薛河儒, 马学磊. 基于改进K-means的羊体点云分割方法[J]. 江西农业大学学报, 2020, 42(5): 1078-1086. [37]李真, 汪沛, 张青. 树干与地面点云分类K-means方法的改进[J]. 东北林业大学学报, 2019, 47(1): 41-46. [38]麻卫峰, 王金亮, 麻源源, 等. 改进K均值聚类的点云林木胸径提取[J]. 测绘科学, 2021, 46(9): 122-129. [39]杨永涛, 黄国言, 张坤, 等. 一种利用曲率约束的改进K-means三维点云数据分割方法[J]. 小型微型计算机系统, 2017, 38(11): 2573-2579. [44]杨征鹤, 喻晨, 杨会民, 等. 基于LiDAR的温室番茄冠层几何参数提取[J]. 新疆农业科学, 2021, 58(10): 1909-1917. [61]王文曦, 李乐林. 深度学习在点云分类中的研究综述[J]. 计算机工程与应用, 2022, 58(01): 26-40. [63]金立生, 贺阳, 王欢欢, 等. 基于自适应阈值DBSCAN的路侧点云分割算法[J]. 汽车工程, 2022, 44(07): 987-996. [64]张长勇, 陈治华, 韩梁. 基于改进 DBSCAN 的激光雷达障碍物检测[J]. 激光与光电子学进展, 2021, 58(24): 443-450. [67]刘天慧. 实时碰撞检测算法技术[M]. 北京: 清华大学出版社, 2010: 148-149. [68]民航资源网. 低空空域使用管理规定(试行)(征求意见稿)[EB/OL]. http://news.carnoc.com/list/288/288814.html, 2014-7-23. [69]廖小罕, 徐晨晨, 叶虎平, 等. 无人机应用发展关键基础设施与低空公共航路网规划[J]. 中国科学院院刊, 2022, 37(07): 977-988. [77]王康, 郭剑东, 桑标. 基于综合改进RRT算法的无人机三维航路规划[J]. 计算机仿真, 2021, 38(9): 40-44, 69. [84]张长勇, 陈治华, 韩梁. 基于改进DBSCAN的激光雷达障碍物检测[J]. 激光与光电子学进展, 2021, 58(24): 443-450. |
中图分类号: | V279 |
馆藏号: | 2023-007-0128 |
开放日期: | 2023-09-27 |