- 无标题文档

中文题名:

 燃气轮机涡轮叶片榫齿磨削及表面完整性研究    

姓名:

 李敏    

学号:

 BX1705531    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080201    

学科名称:

 工学 - 机械工程 - 机械制造及其自动化    

学生类型:

 博士    

学位:

 工学博士    

入学年份:

 2017    

学校:

 南京航空航天大学    

院系:

 机电学院    

专业:

 机械工程    

研究方向:

 高效精密加工技术    

第一导师姓名:

 徐九华    

第一导师单位:

 机电学院    

完成日期:

 2023-06-01    

答辩日期:

 2023-10-09    

外文题名:

 

Research on Profile Grinding of Gas Turbine Blade Root and Machined Surface Integrity

    

中文关键词:

 耐腐蚀镍基高温合金 ; 涡轮叶片榫齿 ; 微晶刚玉砂轮 ; 成形磨削 ; 表面完整性     

外文关键词:

 Corrosion resistant nickel-based superalloys ; Turbine blade root ; Microcrystalline alumina wheel ; Profile grinding ; Surface integrity     

中文摘要:

  K444材料是我国自主研发的耐腐蚀性镍基高温合金,具有优异的高温力学性能和耐热腐蚀性能,主要用于制造舰载和陆用燃气轮机的涡轮叶片。由于该材料含有较多亲氧元素和高强韧特性,加工难度大,导致加工效率低下、砂轮磨损严重并极易发生磨削烧伤,加工表面完整性难以保证。目前普通刚玉砂轮磨削K444材料面临砂轮过度修整、难以实现工艺进一步优化等问题,影响这种高温合金涡轮叶片的推广应用。因此,开展K444镍基高温合金高效成形磨削、表面完整性形成规律与控制研究对提高燃气轮机涡轮叶片服役性能具有重要意义。

  论文旨在研究砂轮修整工艺与修整后磨削状态间的关系、K444材料的磨削特性及对加工表面耐腐蚀性能影响规律、磨削过程中温度与残余应力分布、砂轮磨损等,优选出适合K444镍基高温合金榫齿成形磨削工艺,实现燃气轮机涡轮叶片榫齿的高效高表面完整性加工。主要研究内容及成果如下:

  (1)开展新型刚玉砂轮与陶瓷CBN砂轮修整研究,通过修整力状态信号监测,引入声发射技术和修整轨迹长度概念,对修整过程中修整工具与砂轮接触的微观形貌特征进行研究。结果表明,声发射均方根电压可以反映金刚石磨粒的磨损行为并敏锐反馈出磨粒发生剧烈磨损的波动状态;探明了微晶刚玉磨粒发挥自锐特性的修整状态,为修整过程监测、工具磨损检测提供了参考。

  (2)采用刚玉砂轮(白刚玉砂轮与新型微晶刚玉砂轮)与超硬砂轮(电镀CBN砂轮与陶瓷CBN)工具,探明了不同磨削工艺条件对K444材料磨削加工性的影响。利用磨削力、磨削温度、磨削表面形貌、砂轮磨损量、砂轮磨损形貌等特征,综合评价了K444材料的磨削加工性,为后续工艺优化提供了依据。

  (3)利用电化学极化曲线和阻抗谱曲线对已加工表面的腐蚀性能开展研究,并对材料的腐蚀形貌及磨削表面的元素分布特征进行分析。结果表明,磨削表面缺陷和形貌直接影响磨削表面的腐蚀坑深度、相腐蚀的趋向性及元素分布状态。

  (4)开展K444榫齿成形磨削与表面完整性研究,建立成形磨削温度和残余应力分布预测模型,并与实测值对比分析,验证了模型的准确性,为实现燃气轮机涡轮叶片榫齿的高效高表面完整性加工提供了支撑。

外文摘要:

The nickel-based superalloy K444 is a corrosion-resistant material independently developed in China. It can be applied to certain types of ship-based and land-based gas turbines as the blades, with the excellent high-temperature mechanical performance and hot-corrosion resistance. However, high strength and toughness properties, as well as the presence of a relatively high amounts of oxidized elements lead to the low machining efficiency, rapid tool wear and grinding burns. Improving processing efficiency is of crucial importance for the preparation of turbine blades. Improving and controlling processing surface integrity is essential for enhancing the performance of gas turbines in service. At present, the existing technology faces problems such as excessive dressing, low machining efficiency, unstable processing surface quality, burning, inability to further optimize the process with ordinary alumina grinding wheels. The incomplete understanding of the characteristics of the obtained grinding surfaces, unclear rules of temperature distribution and surface residual stress state of the ground surface, make it impossible to make accurate predictions. This has led to an increase the cost of machining K444 materials and limited its use.

This article aims to conduct research on realizing high-quality and high-efficiency forming and controlling surface integrity of nickel-based high-temperature alloys. To develop rules of grinding surface integrity by exploring the relationship between grinding wheel and the state of grinding after dressing. Predict the temperature and residual stress distribution, investigate the grinding wheel wear rules and other surface integrity. The main research content and achieved results are as follows:

(1) The dressing of a new type of microcrystalline alumina grinding wheel and ceramic CBN grinding wheel was carried out. By monitoring the dressing force signal, introducing acoustic emission technology and the concept of dressing trajectory length, the micro-morphological characteristics of the contact between the dressing tool and grinding wheel during were studied. Which revealed the characteristics of grinding wheel under different states, and clarified the relationship between self-sharpening properties and dressing status. This provided a reference for monitoring the dressing process and detecting tool wear.

(2) The grinding characteristics of K444 material were comprehensively analyzed. Using alumina grinding wheels (white alumina grinding wheels and new microcrystalline alumina grinding wheels) and super-hard grinding tools (electroplated CBN grinding wheels and ceramic CBN), its grinding force, temperature, surface morphology, wheel wear andmorphology were described under different grinding conditions. The grinding characteristics of K444 material were comprehensively evaluated, providing practical guidance for subsequent parameter optimization.

(3) The influence of different grinding surface states on corrosion behavior was elucidated, including ground surface micro-morphology, element distribution characteristics, etc. The corrosion resistance properties were studied by electrochemical polarization curves and impedance spectroscopy curves. The results showed that the surface defects and morphology directly affect the depth of corrosion pit, the trend of phase corrosion and the distribution of elements.

(4) A predictive model was established for the profile grinding process and surface integrity of K444 blade root. The grinding temperature and residual stress distribution characteristics were verified, which can be effectively predicted. The recommended optimized processing surface integrity was also verified, enabling high-quality and high-efficiency processing of K444 blade root.

参考文献:

[1] 崔慧然, 冯相如, 任建伟. 燃气轮机涡轮叶片制造工艺现状及发展方向. 铸造, 2022, 71(02):143-150.

[2] Eckardt D, Rufli P. Advanced gas turbine technology: ABB / BCC historical firsts. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2002, 124(3):1-9.

[3] 杨鑫, 郭鹏飞, 吕振家, 等. 重型燃气轮机主要部件用材的发展及应用. 汽轮机技术, 2022, 64(04):315-317.

[4] 赵志奇. 燃气涡轮叶顶高效冷却结构设计与换热机理研究 [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2022.

[5] 杜静文. 某型燃气轮机的无扰切换控制设计[硕士学位论文]. 大连: 大连理工大学, 2022.

[6] 李孝堂, 梁春华. 世界航改舰船用燃气轮机的发展趋势. 航空科学技术, 2011, 06(002):4-7.

[7] 郭洋, 张建勋, 熊建坤, 等. 铸造镍基高温合金增材修复技术的研究现状. 稀有金属材料与工程, 2021, 50(04):1462-1470.

[8] 杨鑫, 郭鹏飞, 吕振家, 等. 重型燃气轮机主要部件用材的发展及应用. 汽轮机技术, 2022, 64(04):315-317.

[9] 帅三三, 李石磊, 玄伟东, 等. 重型燃气轮机涡轮叶片材料及制造技术研究进展. 热力透平, 2022, 51(03):161-169.

[10] Yuri M, Masada J, Hada S et al. Operating results of j-series gas turbine and development of JAC. Mitsubishi Heavy Industries Technical Review, 2017, 54(3):16-22.

[11] 范学领, 李定骏, 吕伯文, 等. 国之重器,十载砥砺—重型燃气轮机制造基础研究进展. 中国基础科学, 2018, 20(02):32-40.

[12] 王辉. R20燃气轮机涡轮工作叶片断裂失效分析. 燃气轮机技术, 2023, 36(02):62-67.

[13] 李小萌. 某海上平台用燃气轮机涡轮部件腐蚀防护设计. 中国设备工程, 2023, 11:132-134.

[14] 鲁凡. 燃机用镍基单晶高温合金长时蠕变行为与Re的作用机理 [博士学位论文]. 北京:北京科技大学, 2023.

[15] 迟重然. 燃气轮机透平冷却结构作用机制与设计优化方法. [博士学位论文]. 北京:清华大学, 2014.

[16] Krewinkel R. A review of gas turbine effusion cooling studies. International Journal of Heat and Mass Transfer, 2013, 66:706-722.

[17] 罗亮, 肖程波, 陈晶阳, 等. 工业燃气轮机涡轮叶片用铸造高温合金研究及应用进展. 材料工程, 2019, 47(06):34-41.

[18] Cui L Q, Yu J J, Liu J L, et al. The creep deformation mechanisms of a newly designed nickel-base superalloy. Materials Science and Engineering A, 2018, 710:309-317.

[19] 魏佳明, 餘沛坰, 王博, 等. 重型燃气轮机与航空发动机冷却叶片的联系和差异. 航空动力, 2019, 2:74-78.

[20] Sulzer S, Hasselqvist M, Murakami H, et al. The Effects of Chemistry Variations in New Nickel-Based Superalloys for Industrial Gas Turbine Applications. Metallurgical and Materials Transactions A, 2020, 51(9):4902-4921.

[21] 罗磊. 涡轮高效冷却结构设计方法及换热机理研究 [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2016.

[22] 张慧, 江河, 董建新. 重型燃气轮机燃烧室用高温合金研究进展 .兵器材料科学与工程, 2021, 44(6):148-156.

[23] Wu B, Yang X, Liu Z, et al. Effects of Novel Turning Vanes on Pressure Loss and Tip-Wall Heat Transfer in an Idealized U-Bend Channel. International Communications in Heat and Mass Transfer, 2021, 121:105072.

[24] Xie Y, Shi D, Shen Z. Experimental and Numerical Investigation of Heat Transfer and Friction Performance for Turbine Blade Tip Cap with Combined Pin-Fin Dimple/Protrusion Structure. International Journal of Heat and Mass Transfer, 2017, 104:1120-1134.

[25] 郭建亭. 高温合金材料学上册. 北京: 科学出版社, 2008.

[26] Meng Z W, Liu Y B, Li Y J, et al. The performance evaluation for thermal protection of turbine vane with film cooling and thermal barrier coating. Applied Thermal Engineering, 2022, 210(25): 118405-118405.

[27] 梁莉, 陈伟, 乔先鹏, 等. 钴基高温合金增材制造研究现状及展望. 精密成形工程, 2018, 10(05):102-106.

[28] 桂伟民. 钴基高温合金碳化物演变及相关性能研究 [博士学位论文]. 安徽:中国科学技术大学, 2017.

[29] 郭建亭. 高温合金在能源工业领域中的应用现状与发展. 金属学报, 2010, 46(05):513-527.

[30] 闫学伟. 重燃叶片定向凝固过程多尺度数值模拟及凝固缺陷预测 [博士学位论文]. 北京: 清华大学, 2017.

[31] Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296:280-284.

[32] 张志鑫, 曾武, 卞祥德, 等. 热障涂层对涡轮动叶温度及应力的影响研究. 推进技术, 2023, 44(05):225-238.

[33] Thakur A, Gangopadhyay S. State-of-the-art in surface integrity in machining of nickel-based super alloys. International Journal of Machine Tools and Manufacture, 2016, 100:25-54.

[34] Pauzi A A, Ghazali M J, Fathul W, et al. Wear characteristics of superalloy and hardface coatings in gas turbine applications-a review. Metal, 2020, 10(1171):2-14.

[35] Ding W, Dai C, Yu T, et al. Grinding performance of textured monolayer CBN wheels: Undeformed chip thickness nonuniformity modeling and ground surface topography prediction. International Journal of Machine Tools and Manufacture, 2017, 122:66-80.

[36] 郭建亭. 高温合金材料学下册. 北京: 科学出版社, 2008.

[37] 姜磊. 航改燃气轮机燃烧室头部结构参数及燃烧特性研究 [博士学位论文]. 北京:中国科学院大学(中国科学院工程热物理研究所), 2020.

[38] 张宗鹏, 张思倩, 王栋, 等. ppm级S对第二代抗热腐蚀镍基单晶高温合金恒温氧化行为的影响.铸造, 2019, 68(03):232-236.

[39] Pollock T M. Alloy design for aircraft engines. Nature Materials, 2016, 15(8):809.

[40] Tresa M. Pollock, Sammy Tin. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties. Journal of Propulsion and Power, 2006, 22(2):361-361.

[41] 彭建强, 吕振家, 张宏涛, 等. 重型燃气轮机透平叶片用单晶合金发展趋势. 热力透平, 2019, 48(04):299-303.

[42] 郭建亭, 周兰章, 袁超, 等. 我国独创和独具特色的几种高温合金的组织和性能. 中国有色金属学报, 2011, 21(02):237-250.

[43] 彭志江, 乐献刚, 张明俊, 等. 固溶冷却速率对镍基高温合金K444组织和力学性能的影响. 金属热处理, 2015, 40(2):163-168.

[44] 郭永安, 李柏松, 赖万慧, 等. 铸造镍基合金K444在900℃空气中的长期氧化行为. 中国腐蚀与防护学报, 2012, 32(4):285-290.

[45] Mohammad V, Masoud S. Creep life prediction of Inconel 738 gas turbine blade. Journal of Applied Sciences, 2009, 9(10): 1950-1955.

[46] Wang J, Zhou L, Sheng L, et al. The microstructure evolution and its effect on the mechanical properties of a hot-corrosion resistant Ni-based superalloy during long-term thermal exposure. Materials and Design, 2012, 39:55-62.

[47] Yin Q, Liu Z, Wang B, et al. Recent progress of machinability and surface integrity for mechanical machining Inconel 718: a review. International Journal of Advanced Manufacturing Technology, 2020, 109(1-2):1-18.

[48] 陈珍珍, 徐九华, 丁文锋, 等.多孔复合结合剂立方氮化硼砂轮磨损特性. 机械工程学报, 2014, 50(17):201-207.

[49] 丁文锋, 苗情, 李本凯, 等. 面向航空发动机的镍基合金磨削技术研究进展. 机械工程学报, 2019, 55(01):189-215.

[50] 丁文锋, 李本凯, 傅玉灿, 等. 涡轮盘榫槽加工技术现状与展望. 中国机械工程, 2021, 32(23):2785-2798.

[51] Shi Z D, Elfizy A, Attia H. An Experimental study on grinding fir-tree root forms using vitrified CBN wheels. Advanced Materials Research, 2014, 1017:55-60.

[52] 靳淇超, 曹帅帅, 汪文虎, 等. DD5镍基单晶高温合金缓进磨削表面完整性研究. 西北工业大学学报, 2022, 40(01):189-198.

[53] Li H N, Yu T B, Wang Z X, et al. Detailed modeling of cutting forces in grinding process considering variable stages of grain-workpiece micro interactions. International Journal of Mechanical Sciences, 2017,126:319-339.

[54] Hashimoto F, Yamaguchi H, Krajnik P, et al. Abrasive fine-finishing technology. CIRP Annals-Manufacturing Technology, 2016, 65(2):597-620.

[55] 傅玉灿. 难加工材料高效加工技术. 西安: 西北工业大学出版社, 2010.

[56] Xu X P, Yu Y Q, Huang H. Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys. Wear, 2003,255(7):1421-1426.

[57] Liu Q, Chen X, Gindy N. Assessment of Al2O3 and superabrasive wheels in nickel-based alloy grinding. International Journal of Advanced Manufacturing Technology, 2007, 33:940-951.

[58] 黄新春,张定华,姚倡锋, 等. 磨削参数对GH4169高温合金磨削表面特征影响研究. 中国机械工程, 2014, 25(02):210-214.

[59] Miao Q, Ding W F, Gu Y L, et al. Comparative investigation on wear behavior of brown alumina and microcrystalline alumina abrasive wheels during creep feed grinding of different nickel-based superalloys. Wear, 2019, 426:1624-1634.

[60] Ding W F, Xu J H, Chen Z Z, et al. Grindability and surface integrity of cast Nickel-based superalloy in creep feed grinding with brazed CBN abrasive wheels. Chinese Journal of Aeronautics, 2010, 23(4):501-510.

[61] Liao Z R, Xu D D, Luna G G, et al. Influence of surface integrity induced by multiple machining processes upon the fatigue performance of a nickel based superalloy. Journal of Materials Processing Technology, 2021, 298(7):117313.

[62] Nie G C, Zhang X M, Yang Z Y, et al. Effects of cutting edge radius on surface integrity in machining of nickel-based cast superalloy: an in situ imaging approach. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2022, 144:124502.

[63] Zhang Y, Ge P Q, Be W B. The study for variable grinding depth to control plane grind-hardening layer depth distribution, The International Journal of Advanced Manufacturing Technology, 2016, 84(5-8):1269-1276.

[64] 杜随更, 姜哲, 张定华, 等. GH4169DA磨削表面变质层软化机理. 航空学报, 2014, 35(05):1446-1451.

[65] Zeng Q, Liu G, Liu L, et al. Investigation into grindability of a superalloy and effects of grinding parameters on its surface integrity. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2015, 229(2):238-250.

[66] Bhaduri D, Soo S L, Aspinwall D K, et al. A study on ultrasonic assisted creep feed grinding of nickel based superalloys. Procedia CIRP, 2012, 1:359-364.

[67] Sinha M K, Setti D, Ghosh S, et al. An investigation on surface burn during grinding of Inconel 718. Journal of Manufacturing Processes, 2016, 21:124-133.

[68] 王延忠, 钟扬, 侯良威, 等. 航空面齿轮磨削碟形砂轮修整方法及误差分析. 航空动力学报, 2017, 32(1):91-94.

[69] Li J W, Fang W J, Wan L, et al. Research on the bonding properties of vitrified bonds with porous diamonds and the grinding performance of porous diamond abrasive tools. Diamond and Related Materials, 2022,123:108841.

[70] Alqahtani B, Zhang M M, Marinescu I, et al. Microscopic characterization and modeling of oxide layer for electrolytic in-process dressing (ELID) grinding with focus on voltage, electrode-wheel gap, and coolant flow. The International Journal of Advanced Manufacturing Technology, 2019, 105(12):4853-4862.

[71] Xi X X, Yu T Y, Ding W F, et al. Grinding of Ti2AlNb intermetallics using silicon carbide and alumina abrasive wheels: Tool surface topology effect on grinding force and ground surface quality. Precision Engineering, 2018, 53:134-145.

[72] Huang H. Effects of truing/dressing intensity on truing/dressing efficiency and grinding performance of vitrified diamond wheels. Journal of Materials Processing Technology, 2001, 117(1):9-14.

[73] Ding W F, Li H N, Zhang L C, et al. Diamond wheel dressing: a comprehensive review. Journal of Manufacturing Science and Engineering - Transactions of the ASME, 2017, 139:121006.

[74] Alexandre F A, José C L, Fernandes L D M, et al. Depth of dressing optimization in CBN wheels of different friabilities using acoustic emission (AE) technique. International Journal of Advanced Manufacturing Technology, 2020, 106(4):5225-5240.

[75] Dai J, Li Y, Xiang D H. The mechanism investigation of ultrasonic roller dressing vitrified bonded CBN grinding wheel. Ceramics International, 2022, 48(17): 24421-24430.

[76] 王金虎. 高陡度蓝宝石保形整流罩的精密磨削关键技术研究 [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2018.

[77] 刘伟, 商圆圆, 邓朝晖等.砂轮表面形貌定量评价及修整效果研究.中国机械工程, 2018, 29(19):2277-2283.

[78] Cearsolo X, Cabanes I, Sanchez J A, et al. Dry-dressing for ecological grinding. Journal of Cleaner Production, 2016, 135:633-643.

[79] Klocke F, Soo S L, Karpuschewski B, et al. Abrasive machining of advanced aerospace alloys and composites. CIRP Annals, 2015, 64(2):581-604.

[80] Nadolny K. Wear phenomena of grinding wheels with sol-gel alumina abrasive grains and glass-ceramic vitrified bond during internal cylindrical traverse grinding of 100Cr6 steel. International Journal of Advanced Manufacturing Technology, 2014, 77(1-4):83-98

[81] Azizi A, Rahimi A, Rezaei S M, et al. Modeling of dressing forces during rotary diamond cup dressing of vitrified CBN grinding wheels. Machining Science and Technology, 2009, 13(3):407-426.

[82] Wang W, Yao P, Wang J, et al. Crack-free ductile mode grinding of fused silica under controllable dry grinding conditions. International Journal of Machine Tools and Manufacture, 2016, 109:126-136.

[83] Xi X X, Ding W F, Fu Y C, et al. Grindability evaluation and tool wear during grinding of Ti2AlNb intermetallics. International Journal of Advanced Manufacturing Technology, 2018, 94(1-4):134-145.

[84] Badger J, Murphy S, O'Donnell G E. Acoustic emission in dressing of grinding wheels: AE intensity, dressing energy, and quantification of dressing sharpness and increase in diamond wear-flat size. International Journal of Machine Tools and Manufacture, 2018, 125:11-19.

[85] Linke B, Klocke F. Temperatures and wear mechanisms in dressing of vitrified bonded grinding wheels, International Journal of Machine Tools and Manufacture, 2010, 50(6):552-558.

[86] Palmer J, Ghadbeigi H, Novovic D, et al. An experimental study of the effects of dressing parameters on the topography of grinding wheels during roller dressing. Journal of Manufacturing Processes, 2018, 31:348-355.

[87] Klocke F, Engelhorn R, Mayer J, et al. Micro-analysis of the contact zone of tribologically loaded second-phase reinforced sol-gel-abrasives. CIRP Annals-Manufacturing Technology, 2002, 51(1):245-250.

[88] Mayer J, Engelhorn R, Bot R, et al. Wear characteristics of second-phase-reinforced sol-gel corundum abrasives. Acta Materialia, 2006, 54(13): 3605-3615.

[89] Khangar A A, Kenik E A, Dahotre N B. Microstructure and microtexture in laser-dressed alumina grinding wheel material. Ceramics International, 2005, 31(4): 621-629.

[90] Guo B, Wu M, Zhao Q, et al. Improvement of precision grinding performance of CVD diamond wheels by micro-structured surfaces. Ceramics International, 2018, 44(14):17333-17339.

[91] Torrance A A, Badger J A. The relation between the traverse dressing of vitrified grinding wheels and their performance. International Journal of Machine Tools and Manufacture, 2000 ,40(12):1787-1811.

[92] Tawakoli T, Daneshi A. T-Dress, A novel approach in dressing and structuring of grinding wheels. Advances in Abrasive Technology, 2012, 565:217-221.

[93] Lee S M, Lee W G, Kim Y H, et al. Surface roughness and the corrosion resistance of 21Cr ferritic stainless steel. Corrosion Science, 2012,63:404-409.

[94] Wang S S, Frankel G S, Jiang J, T et al. Mechanism of localized breakdown of 7000 series aluminum alloys. Journal of The Electrochemical Society, 2013, 160:493–502.

[95] Ardila M A N, Labiapari W S, Costa H L, et al. Influence of stainless steel specimen topography on micro-abrasion and micro-abrasion-corrosion. Wear, 2019, 426-427:1482-1495.

[96] Labiapari W S, Ardila M A N, Binder C, et al. Mechanical effects on the corrosion resistance of ferritic stainless steels during micro abrasion-corrosion. Wear, 2019, 426-427:1474-1481.

[97] Hamada M, Komotori J, M Mizutani , et al. Corrosion Resistance of Co-Cr-Mo Alloy Treated by Electrolytic In-Process Dressing (ELID) Grinding/Thermal Oxidation Hybrid Process. Journal of Solid Mechanics and Materials Engineering, 2012, 6(6):504-511

[98] Zhou N, Pettersson R, Schonning M, et al. Influence of surface grinding on corrosion behavior of ferritic stainless steels in boiling magnesium chloride solution. Materials and Corrosion, 2018, 69(11):1-12.

[99] Xiao Y L, Wang S L, Ma C, et al. Numerical modeling of material removal mechanism and surface topography for gear profile grinding. Journal of Manufacturing Processes, 2022, 76:719-739.

[100] Kadivar M, Azarhoushang B, Shamray S, et al. The effect of dressing parameters on micro-grinding of titanium alloy. Precision Engineering, 2018, 51:176-185.

[101] Karpuschewski B, Lierse T, Kaul T R, et al. Kinematic process model and investigation of grain break out for conditioning with CVD diamond dressing disks. CIRP Journal of Manufacturing Science and Technology, 2018, 22:21-29.

[102] D'Addona D M, Conte S, Lopes W N, et al. Tool condition monitoring of single-point dressing operation by digital signal processing of AE and AI. 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 2018, 67:307-312.

[103] Godino L, Pombo I, Sanchez J A, et al. On the development and evolution of wear flats in microcrystalline sintered alumina grinding wheels. Journal of Manufacturing Processes, 2018, 32:494-505.

[104] Zhu Y J, Ding W F, Yu T Y, et al. Investigation on stress distribution and wear behavior of brazed polycrystalline cubic boron nitride super abrasive grains: Numerical simulation and experimental study. Wear, 2017, 376-377:1234-1244.

[105] Huang X, Ding W F, Zhu Y J, et al. Influence of microstructure and grinding load on the bulk toughness and fracture behavior of PCBN abrasive grains. The International Journal of Advanced Manufacturing Technology, 2018, 94:4519-4530.

[106] Shi Z D, Elfizy A, St-Pierre B, et al. Experimental Study on Grinding of a Nickel-Based Alloy Using Vitrified CBN Wheels. Advanced Materials Research, 2011, 325:134-139.

[107] 杜文浩. 金刚石刀具研磨声发射信号的处理表征与实验研究 [博士学位论文]. 哈尔滨:哈尔滨工业大学, 2015.

[108] Rowe W B. Modern grinding technology, 2nd Edition. Elsevier, William Andrew Imprint, Oxford, 2014.

[109] 李硕, 郭涛, 姚雅萱, 等. 热电材料塞贝克系数的准确测量方法研究. 计量科学与技术, 2020, 09:29-34.

[110] 苗情. 微晶刚玉砂轮缓进深切磨削镍基单晶合金涡轮叶片榫齿研究 [博士学位论文]. 南京:南京航空航天大学, 2020.

[111] Zhu Y J, Ding W F, Rao Z W, et al. Effect of grinding wheel speed on self-sharpening ability of PCBN grain during grinding of nickel-based superalloys with a constant undeformed chip thickness. Wear, 2019, 426-427:1573-1583.

[112] Kaliszer H. Grinding technology. Theory and applications of machining with abrasives: S. Malkin, Ellis Horwood Ltd. International Journal of Machine Tools and Manufacture, 1991,31(3):435-436.

[113] Dai C W, Ding W F, Zhu Y J, et al. Grinding temperature and power consumption in high speed grinding of Inconel 718 nickel-based superalloy with a vitrified CBN wheel. Precision Engineering, 2018, 52:192-200.

[114] 陈亚军, 孙利成, 王汉森. 循环盐雾环境中电镀锌和锌铝涂覆涂层的腐蚀行为. 腐蚀与防护, 2022, 43(10):23-32.

[115] Liu X, Shao Y, Zhang Y, et al. Using high-temperature mechanochemistry treatment to modify iron oxide and improve the corrosion performance of epoxy coating – I. High-temperature ball milling treatment. Corrosion Science, 2015, 90:451-462.

[116] 曹欣锋. 2205双相不锈钢局部腐蚀及钝化性能研究 [博士学位论文]. 北京:北京科技大学, 2023.

[117] Alves A C, Wenger F, Ponthiaux P, et al. Corrosion mechanisms in titanium oxide-based films produced by anodic treatment. Electrochimica Acta, 2017, 234:16-27.

[118] Dey A, Rani R U, Thota H K, et al. Microstructural, corrosion and nanomechanical behavior of ceramic coatings developed on magnesium AZ31 alloy by micro arc oxidation. Ceramics International, 2013, 39(3):3313-3320.

[119] 王力. 激光粉末床熔融高强度不锈钢显微组织调控与腐蚀行为研究 [博士学位论文]. 北京:北京科技大学, 2023.

[120] 潘悦. 2205双相不锈钢及其焊接热影响区应力腐蚀行为及机理 [博士学位论文]. 北京:北京科技大学, 2023.

[121] 李建春.2707双相不锈钢搅拌摩擦焊焊接接头微观组织及性能研究 [博士学位论文].太原:太原理工大学, 2017.

[122] 任敬心, 华定安. 磨削原理. 北京: 电子工业出版社, 2011.

[123] Lefebvre A, Sinot O, Torrance A A, et al. Determination of the partition coefficient for the grinding of a hard WC-Co-Cr coating with a diamond wheel. Machining Science and Technology, 2014, 18(4):585-602.

[124] Malkin S, Guo C. Thermal Analysis of Grinding. CIRP Annals, 2007, 56(2):760-782.

[125] Rowe W. Temperatures in grinding-A review. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 2017, 139: 121001.

[126] Jin T, Stephenson D, Rowe W B. Estimation of the convection heat transfer coefficient of coolant within the grinding zone. Proceeding of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacturing, 2003, 217(3):397-407.

[127] Malkin S. Thermal aspects of grinding. Part 1: Energy partition. Journal of Industrial Engineering-Transactions of the ASME. Journal of Industrial Engineering-Transactions of the ASME, 1974(96):1177-1183.

[128] Lavine A S. A simple model for convective cooling during the grinding process. Journal of Engineering for Industry, 1988, 110(1): 1-6.

[129] Rowe W B, Pettit J A, Boyle A, et al. Avoidance of Thermal Damage in Grinding and Prediction of the Damage Threshold. CIRP Annals, 1988, 37(1):327-330.

[130] Carslaw H, Jaeger J. Conduction of heat in solids. Oxford University Press, Oxford, 1959.

[131] Cerri E, Evangelista E, Ryum N. On the effect of plastic deformation on the coarsening of θ-phase precipitation in an Al-Cu alloy. Metallurgical and Materials Transactions A-Physical Metallurgy And Materials Science, 1997, 28(2): 257-263.

[132] Mahdi M, Zhang L. Applied mechanics in grinding—V. Thermal residual stresses. International Journal of Machine Tools and Manufacture, 1997, 37(5):619-633.

中图分类号:

 TG580    

馆藏号:

 2023-005-0543    

开放日期:

 2024-05-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式