题名: | 高速巡航垂直起降飞行器概念设计方法研究 |
作者: | |
学号: | SX2201217 |
保密级别: | 公开 |
语种: | chi |
学科代码: | 082500 |
学科: | 工学 - 航空宇航科学与技术 |
学生类型: | 硕士 |
学位: | 工学硕士 |
入学年份: | 2022 |
学校: | 南京航空航天大学 |
院系: | |
专业: | |
研究方向: | 飞行器总体设计 |
导师姓名: | |
导师单位: | |
完成日期: | 2025-03-01 |
答辩日期: | 2025-03-13 |
外文题名: |
Research on Conceptual Design of High-Speed Vertical Take-Off and Landing Aircraft |
关键词: | |
外文关键词: | vertical takeoff and landing ; tiltrotor ; conceptual design ; initial sizing ; variable cycle engine |
摘要: |
在未来海洋资源争夺中,海军对于两栖登陆及海域作战的装备需求越来越迫切。高速巡航垂直起降飞行器(High-Speed Vertical Take-Off and Landing Aircraft, 简称HSVTOL)兼具直升机和固定翼飞机的优点,成为未来两栖作战的首选装备。HSVTOL作为一种新概念飞行器,其概念设计尚未形成成熟的方法论,原有的飞机设计方法也不能直接套用。针对这一问题,本文围绕HSVTOL的概念设计方法展开了研究,主要工作如下: (1)明确了HSVTOL的任务使命和性能要求,确定了其动力系统为涡轴-涡扇变循环发动机(TurboShaft-turboFan Variable Cycle Engine, 简称TSFVCE),总体布局采用可折叠倾转旋翼构型加延伸翼的方案。 (2)提出了一种针对HSVTOL的总体基本参数估算方法:首先基于燃油系数法估算最大起飞重量,然后针对不同性能要求进行约束分析并建立旋翼与机翼参数的关联关系,进而创建用于选取HSVTOL总体基本参数的“新型界限线图”。根据所选总体参数,完成了HSVTOL的气动外形设计和机体各部件的参数化建模,并针对HSVTOL的特殊构型设计了一套与之匹配的可折叠旋翼机构。 (3)计算分析了HSVTOL的重量特性、气动特性、飞行性能、操稳特性及倾转过渡走廊,其中,计算所得全机巡航升阻比为9.3,航程达到2583 km,最大巡航速度超过818 km/h,满足设计要求和性能指标。通过HSVTOL样机缩比模型风洞试验进一步验证了数值方法计算结果的可靠性及设计方案的合理性。 研究结果表明,本文所提出HSVTOL总体基本参数估算方法具有较高的可信度,基于此方法所形成的HSVTOL概念设计方案能够满足其设计要求和指标,具有较好的可靠性。 |
外摘要要: |
In the future competition for marine resources, the demand for equipment for amphibious landings and sea operations by navies is becoming increasingly urgent. High-Speed Vertical Take-Off and Landing Aircraft (HSVTOL), which combines the advantages of helicopters and fixed-wing aircraft, has emerged as the preferred equipment for future amphibious operations. As an emerging concept aircraft, HSVTOL lacks a mature methodology for its conceptual design, and existing aircraft design methods cannot be directly applied. To address this issue, this paper conducts research on the conceptual design method for HSVTOL. The main work is as follows: (1) The mission objectives and performance requirements of the HSVTOL have been clearly defined, and the adoption of vertical takeoff and landing capabilities. The power system is determined to be a TurboShaft-turboFan Variable Cycle Engine (TSFVCE), and the overall layout employs a foldable tiltrotor configuration with extended wings. (2) A method for estimating the basic parameters of the HSVTOL has been proposed: the maximum takeoff weight is estimated based on the fuel fraction method; constraint analyses are conducted for different performance requirements, and the correlation between rotor and wing parameters is established. A constraint diagram is created for selecting the basic parameters of the HSVTOL. Based on the selected basic parameters, the aerodynamic shape design of the HSVTOL and the parametric modeling of its various components are completed, and a set of foldable rotor mechanisms matching the special configuration of the HSVTOL is designed. (3) The weight characteristics, aerodynamic properties, flight performance, handling and stability characteristics, and tilt-transition corridor of the HSVTOL are analyzed. With a cruise lift-to-drag ratio of 9.3, a range of 2583 km, and a max cruise speed exceeding 818 km/h, it meets design requirements. Wind tunnel tests with a scaled model verify the calculations and design rationality. The research results demonstrate that the proposed method for estimating the basic parameters of HSVTOL has high credibility. The conceptual design scheme formed based on this method meets the design requirements and indicators with good reliability. |
参考文献: |
[1] 王丽.世界主要海洋国家的发展经验对中国建设海洋强国的启示[C]//中国海洋学会.中国海洋学会,2014. [2] 薛蒙,孙强.倾转旋翼机军事需求与关键技术分析[J].直升机技术,2020(1):4. [3] 于进勇,王超.垂直起降无人机技术发展现状与展望[J].飞航导弹,2017(5):6. [4] 吴希明.高速直升机发展现状、趋势与对策[J].南京航空航天大学学报,2015,47(2):7. [5] 邓景辉.高速直升机关键技术与发展[J].航空学报,2024,45(9):1-20. [9] 李昊.美国“联合多任务旋翼机”项目发展及预测[N].中国航空报,2015-05-28(B02). [10] LEIGH G.US army sounds defiant note on FVL programme[J].Flight International,2017,192(5598):13. [12] YASMIN T.X-plane may impact future vertical lift program[J].National Defense,2016,100(750):18. [14] 陈安强,崔济多,杨志鹏,等.美国高速垂直起降飞行器预研项目发展及启示[J].飞航导弹,2021(01):91-98. [15] 李昊.美国开展下一代高速旋翼机技术预研项目[N].中国航空报,2014-11-04(T06). [21] 温杰.承袭与创新V-280倾转旋翼机[J].兵器知识,2018(03):44-48. [24] 尹欣繁,车兵辉,章贵川,等.国外复合式高速直升机发展现状与关键技术[J].飞航导弹,2019(11):56-60. [25] 黄明其,徐栋霞,何龙,等.常规旋翼构型复合式高速直升机发展概况及关键技术[J].航空动力学报,2021,36(6):1156-1168. [26] 余震,王永红.复合式高速直升机传动系统关键技术分析[J].航空动力,2018(03):66-68. [27] LOVERING Z.A3 by Airbus: Vahana[C]//73rd Annual Vertical Flight Society Forum.2010. [28] 杨玉腾,李治权,冷俊杰.基于任务需求的高速旋翼机多方案对比研究[J].航空科学技术,2023,34(05):7-13. [30] RAYMER D P.Aircraft design: a conceptual approach[M].6th ed.Reston:AIAA Inc.,2018. [31] 余雄庆,徐惠民,罗东明.飞机总体设计基本原理[M].北京:科学出版社,2023. [32] WILLCOX K.Aircraft systems engineering cost analysis[J].Boston: MIT,2004. [40] MALONE B.High-speed civil transport study using ACSYNT:AIAA-93-4006[R].Monterey,CA:AIAA,1993. [57] 朱庆镇.倾转旋翼机总体参数优化设计[D].南京:南京航空航天大学,2011. [58] 左正新.倾转旋翼机总体参数选择与设计优化[D].南京:南京航空航天大学,2016. [59] 周琪琛,李春华.高速四倾转旋翼机总体参数优化设计研究[J].直升机技术,2016(01):1-6. [64] EL-SAYED A F.Aircraft propulsion and gas turbine engines[M].New York(USA):CRC Press,2008:1-853. [77] 梁春华,索德军,孙明霞.美国第6代战斗机发动机关键技术综述[J].航空发动机,2016,42(2):93-97. [86] 陈光.航空发动机结构设计分析[M].北京:北京航空航天大学出版社,2014. [89] 陈玉春,贾琳渊,任成,等.涡轴涡扇组合循环发动机:CN206694149U[P].2018-06-19. [96] 张呈林,郭才根.直升机总体设计[M].北京:国防工业出版社,2006. [97] 王适存.直升机空气动力学[M].北京:航空专业教材编审组,1985. [98] JOHNSON W.Rotorcraft Aeromechanics[J].Journal of the American Helicopter Society,2013,58(3):1. [100] 马松,谭建国,王光豪,等.基于飞发一体化的自适应循环发动机参数优化研究[J].推进技术,2018,39(08):1703-1711. [103] 纪创,汪勇,王召广,等.轴扇转换式发动机最优转换点串行优化设计方法[J].推进技术,2024,1-13. [104] SEDDON J M.Basic Helicopter Aerodynamics[M].Chichester,United Kingdom:John Wiley & Sons,2011. [108] SCOTT M,SUTTON J.Technology needs for high-speed rotorcraft:NAS2-13058[R].NASA,1990. [114] 钱晓强.临近空间高速飞机概念设计工具集开发[D].南京:南京航空航天大学,2020. [120] ONERA M6 Wing[EB/OL].[2024-11-15].https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing.html. [121] 顾诵芬.飞机总体设计[M].北京:北京航空航天大学出版社,2001. [122] 曹芸芸.倾转旋翼飞行器飞行动力学数学建模方法研究[D].南京:南京航空航天大学,2012. [123] JOHNSON W.Helicopter Theory[M]. Mineola,USA:Dover Publications Inc.,1994. |
中图分类号: | V221 |
馆藏号: | 2025-001-0054 |
开放日期: | 2025-09-25 |