- 无标题文档

题名:

 高速巡航垂直起降飞行器概念设计方法研究    

作者:

 李启航    

学号:

 SX2201217    

保密级别:

 公开    

语种:

 chi    

学科代码:

 082500    

学科:

 工学 - 航空宇航科学与技术    

学生类型:

 硕士    

学位:

 工学硕士    

入学年份:

 2022    

学校:

 南京航空航天大学    

院系:

 航空学院    

专业:

 航空宇航科学与技术    

研究方向:

 飞行器总体设计    

导师姓名:

 王宇    

导师单位:

 航空学院    

完成日期:

 2025-03-01    

答辩日期:

 2025-03-13    

外文题名:

 

Research on Conceptual Design of High-Speed Vertical Take-Off and Landing Aircraft

    

关键词:

 垂直起降 ; 倾转旋翼机 ; 概念设计 ; 总体基本参数估算 ; 变循环发动机     

外文关键词:

 vertical takeoff and landing ; tiltrotor ; conceptual design ; initial sizing ; variable cycle engine     

摘要:

在未来海洋资源争夺中,海军对于两栖登陆及海域作战的装备需求越来越迫切。高速巡航垂直起降飞行器(High-Speed Vertical Take-Off and Landing Aircraft, 简称HSVTOL)兼具直升机和固定翼飞机的优点,成为未来两栖作战的首选装备。HSVTOL作为一种新概念飞行器,其概念设计尚未形成成熟的方法论,原有的飞机设计方法也不能直接套用。针对这一问题,本文围绕HSVTOL的概念设计方法展开了研究,主要工作如下:

(1)明确了HSVTOL的任务使命和性能要求,确定了其动力系统为涡轴-涡扇变循环发动机(TurboShaft-turboFan Variable Cycle Engine, 简称TSFVCE),总体布局采用可折叠倾转旋翼构型加延伸翼的方案。

(2)提出了一种针对HSVTOL的总体基本参数估算方法:首先基于燃油系数法估算最大起飞重量,然后针对不同性能要求进行约束分析并建立旋翼与机翼参数的关联关系,进而创建用于选取HSVTOL总体基本参数的“新型界限线图”。根据所选总体参数,完成了HSVTOL的气动外形设计和机体各部件的参数化建模,并针对HSVTOL的特殊构型设计了一套与之匹配的可折叠旋翼机构。

(3)计算分析了HSVTOL的重量特性、气动特性、飞行性能、操稳特性及倾转过渡走廊,其中,计算所得全机巡航升阻比为9.3,航程达到2583 km,最大巡航速度超过818 km/h,满足设计要求和性能指标。通过HSVTOL样机缩比模型风洞试验进一步验证了数值方法计算结果的可靠性及设计方案的合理性。

研究结果表明,本文所提出HSVTOL总体基本参数估算方法具有较高的可信度,基于此方法所形成的HSVTOL概念设计方案能够满足其设计要求和指标,具有较好的可靠性。

外摘要要:

In the future competition for marine resources, the demand for equipment for amphibious landings and sea operations by navies is becoming increasingly urgent. High-Speed Vertical Take-Off and Landing Aircraft (HSVTOL), which combines the advantages of helicopters and fixed-wing aircraft, has emerged as the preferred equipment for future amphibious operations. As an emerging concept aircraft, HSVTOL lacks a mature methodology for its conceptual design, and existing aircraft design methods cannot be directly applied. To address this issue, this paper conducts research on the conceptual design method for HSVTOL. The main work is as follows:

(1) The mission objectives and performance requirements of the HSVTOL have been clearly defined, and the adoption of vertical takeoff and landing capabilities. The power system is determined to be a TurboShaft-turboFan Variable Cycle Engine (TSFVCE), and the overall layout employs a foldable tiltrotor configuration with extended wings.

(2) A method for estimating the basic parameters of the HSVTOL has been proposed: the maximum takeoff weight is estimated based on the fuel fraction method; constraint analyses are conducted for different performance requirements, and the correlation between rotor and wing parameters is established. A constraint diagram is created for selecting the basic parameters of the HSVTOL. Based on the selected basic parameters, the aerodynamic shape design of the HSVTOL and the parametric modeling of its various components are completed, and a set of foldable rotor mechanisms matching the special configuration of the HSVTOL is designed.

(3) The weight characteristics, aerodynamic properties, flight performance, handling and stability characteristics, and tilt-transition corridor of the HSVTOL are analyzed. With a cruise lift-to-drag ratio of 9.3, a range of 2583 km, and a max cruise speed exceeding 818 km/h, it meets design requirements. Wind tunnel tests with a scaled model verify the calculations and design rationality.

The research results demonstrate that the proposed method for estimating the basic parameters of HSVTOL has high credibility. The conceptual design scheme formed based on this method meets the design requirements and indicators with good reliability.

参考文献:

[1] 王丽.世界主要海洋国家的发展经验对中国建设海洋强国的启示[C]//中国海洋学会.中国海洋学会,2014.

[2] 薛蒙,孙强.倾转旋翼机军事需求与关键技术分析[J].直升机技术,2020(1):4.

[3] 于进勇,王超.垂直起降无人机技术发展现状与展望[J].飞航导弹,2017(5):6.

[4] 吴希明.高速直升机发展现状、趋势与对策[J].南京航空航天大学学报,2015,47(2):7.

[5] 邓景辉.高速直升机关键技术与发展[J].航空学报,2024,45(9):1-20.

[6] MAISEL M D,GIULIANETTI D J,DUGAN D C.The history of the XV-15 tiltrotor research aircraft:NASA SP-2000-4517[R].Washington,D.C.:NASA,2000.

[7] DETORE J A,GAFFEY T M.The stopped-rotor variant of the proprotor VTOL air-craft[J].Journal of the American Helicopter Society,1970,15(3):45-56.

[8] STEPHEN T.Army selects Bell,Sikorsky-Boeing for JMR-TD[EB/OL].(2014-08-13)[2024-11-02].https://www.flightglobal.com/army-selects-bell-sikorsky-boeing-for-jmr-td/114189.article.

[9] 李昊.美国“联合多任务旋翼机”项目发展及预测[N].中国航空报,2015-05-28(B02).

[10] LEIGH G.US army sounds defiant note on FVL programme[J].Flight International,2017,192(5598):13.

[11] JUSTIN D.Marines want to leverage future vertical lift efforts for new sea-based UAS[EB/OL].(2016-12-14)[2024-11-02].https://insidedefense.com/daily-news/marines-want-leverage-future-vertical-lift-efforts-new-sea-based-uas.

[12] YASMIN T.X-plane may impact future vertical lift program[J].National Defense,2016,100(750):18.

[13] CHRISTEN E S,JULIE B D,LAURA G M,et al.Atradespace framework for evaluating crew-ing configurations for future vertical lift[C]//Proceedings of the Human Factors and Ergonom-ics Society Annual Meeting,2019,63(1):352-356.

[14] 陈安强,崔济多,杨志鹏,等.美国高速垂直起降飞行器预研项目发展及启示[J].飞航导弹,2021(01):91-98.

[15] 李昊.美国开展下一代高速旋翼机技术预研项目[N].中国航空报,2014-11-04(T06).

[16] STEPHEN T.USMC reveals new details of MUX acquisition plan[EB/OL].(2018-06-08)[2024-11-02].https://www.flightglobal.com/helicopters/usmc-reveals-new-details-of-mux-acquisi-tion-plan-/128409.article.

[17] BLACHA M,FINK A,EGLIN P,et al.“Clean Sky 2”: Exploring new rotorcraft high speed configurations[C]//The 43rd European Rotorcraft Forum.Milan:ERF,2017:1-12.

[18] BLACHA M,HELICOPTERS A,GARCIA-RIOS A,et al.The challenges for the integration of the drive shaft in the RACER’s wing configuration[C]//Proceedings of the Vertical Flight Soci-ety 75th Annual Forum.2019:1-11.

[19] JIMENEZ GARCIA A,BARAKOS G N.Numerical simulations on the ERICA tiltrotor[J].Aerospace Science and Technology,2017,64:171-191.

[20] WALSH D,WEINER S,ARIFIAN K,et al.Development testing of the sikorsky X2 technolo-gy™ demonstrator[C]//The 65th Annual Forum of the American Helicopter Society Interna-tional.2009.

[21] 温杰.承袭与创新V-280倾转旋翼机[J].兵器知识,2018(03):44-48.

[22] 远航.美国陆军“未来攻击侦察机”项目五个竞标设计方案技术特点解析[EB/OL].(2020-03-17)[2024-11-02].https://www.aeroinfo.com.cn/Item/33767.aspx.

[23] POB V.Bell helicopter introduces Bell V-247 “Vigilant” tiltrotor unmanned aerial system in shipborne configuration[EB/OL].(2016-09-22)[2024-11-02].https://aviationnews.eu/news/2016/09/bell-helicopter-introduces-bell-v-247-vigilant-tiltrotor-unmanned-aerial-system-ship-borne-configuration.

[24] 尹欣繁,车兵辉,章贵川,等.国外复合式高速直升机发展现状与关键技术[J].飞航导弹,2019(11):56-60.

[25] 黄明其,徐栋霞,何龙,等.常规旋翼构型复合式高速直升机发展概况及关键技术[J].航空动力学报,2021,36(6):1156-1168.

[26] 余震,王永红.复合式高速直升机传动系统关键技术分析[J].航空动力,2018(03):66-68.

[27] LOVERING Z.A3 by Airbus: Vahana[C]//73rd Annual Vertical Flight Society Forum.2010.

[28] 杨玉腾,李治权,冷俊杰.基于任务需求的高速旋翼机多方案对比研究[J].航空科学技术,2023,34(05):7-13.

[29] 联合飞机集团.镧影R6000 倾转旋翼飞行器[EB/OL].(2024-11-07)[2024-11-17].https://www.uatair.com/product/info/69.html.

[30] RAYMER D P.Aircraft design: a conceptual approach[M].6th ed.Reston:AIAA Inc.,2018.

[31] 余雄庆,徐惠民,罗东明.飞机总体设计基本原理[M].北京:科学出版社,2023.

[32] WILLCOX K.Aircraft systems engineering cost analysis[J].Boston: MIT,2004.

[33] SADRAEY M H.Aircraft design: a system engineering approach[M].Chichester,United Kingdom:John Wiley & Sons Ltd,2013:1-738.

[34] HAHN A.Vehicle Sketch Pad: A Parametric Geometry Modeler for Conceptual Aircraft De-sign[M].48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,2010.

[35] LI J,YANG W,ZHANG Y,et al.Aircraft vulnerability modeling and computation methods based on product structure and CATIA[J].Chinese Journal of Aero-nautics,2013,26(2):334-342.

[36] SHAO W,LIU C,YUE J,et al.A digital management system of part processing parameter based on UG[C]//IEEE International Conference on Mechatronics and Automa-tion.IEEE,2014:2055-2059.

[37] NOUNU H N,KIM M H Y,PONOMAREV A L,et al.The use of Pro/ENGINEER CAD soft-ware and fishbowl toolkit in ray-tracing analysis:NASA/TP-2009-214788[R].NASA,2009.

[38] VERSTRAETE D,HENDRICK P.Preliminary design of an ACES TSTO air launch vehi-cle:AIAA-2003-6997[R].Norfolk,VA:AIAA,2003.

[39] VANDERPLAATS G N.Automated optimization techniques for aircraft synthe-sis:AIAA-76-909[R].Moffett Field,CA:AIAA,1976.

[40] MALONE B.High-speed civil transport study using ACSYNT:AIAA-93-4006[R].Monterey,CA:AIAA,1993.

[41] MYKLEBUST A,GELHAUSEN P.Improving aircraft conceptual design tools-new enhance-ments to ACSYNT:AIAA-93-3970[R].Monterey,CA:AIAA,1993.

[42] MALONE B,MYKLEBUST A.ACSYNT - commercialization success (software development project for AirCraft SYNThesis)[C]//Space Plane and Hypersonic Systems and Technology Conference,1996.

[43] JAYARAM S,MYKLEBUST A,GELHAUSEN P.ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft:AIAA-92-1268[R].Irvine,CA: AI-AA,1992.

[44] GALLAGHER C,STUART C,SPENCE S.Validation and Calibration of Conceptual Design Tool SUAVE[C]//AIAA AVIATION 2023 Forum,2023.

[45] LUKACZYK T W,WENDORff A D,COLONNO M,et al.SUAVE: An Open-Source Environ-ment for Multi-Fidelity Conceptual Vehicle Design[C]//16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,2015.

[46] MACDONALD T,BOTERO E,VEGH J M,et al.SUAVE:An Open-Source Environment En-abling Unconventional Vehicle Designs through Higher Fidelity[C]//55th AIAA Aerospace Sciencesmeeting,2017:0234.

[47] CARLOS R I,LUKACZYK T W,WENDORFF A D,et al.SUAVE: An Open-Source Environ-ment for Multi-Fidelity Conceptual Vehicle Design[C]//AIAA Aviation and Aeronautics Forum and Exposition,2015.

[48] SCHUT E J,TOOREN M J L,BERENDS J P T J.Feasilization of a structural wing design problem:AIAA-2008-22008[R].Schaumburg,IL:AIAA,2008.

[49] TALBOT P D,PHILLIPS J D,TOTAH J J.Selected design issues of some high-speed rotorcraft concepts[J].Journal of Aircraft,1993,30(6):864-871.

[50] DAVIS J H,MOSIG T,SCHRAGE D.Design Methodology for Developing Concept Inde-pendent Rotorcraft Analysis and Design Software[C]//Annual Forum Proceedings-American Helicopter Society. American Helicopter Society,Inc.,2008,64(3):1851.

[51] JOHNSON W.NDARC-NASA Design and Analysis of Rotorcraft:NASA/TP-2015-218751.[R].Moffett Field,CA:NASA,2017.

[52] JOHNSON W.NDARC-NASA Design and Analysis of Rotorcraft Theoretical Basis and Archi-tecture[C]//American Helicopter Society Aeromechanics Specialists Conference,2010.

[53] JOHNSON W.NDARC-NASA design and analysis of rotorcraft validation and demonstra-tion[C]//American Helicopter Society Aeromechanics Specialists Conference,2010.

[54] RUSSELL C,JOHNSON W.Conceptual design and performance analysis for a large civil compound helicopter[C]//AHS Future Vertical Lift Aircraft Design Conference,2012.

[55] JOHNSON W,YAMAUCHI G K,WATTS M E.Designs and Technology Requirements for Civil Heavy Lift Rotorcraft[C]//AHS Future Vertical Lift Aircraft Design Conference,2006.

[56] YEO H,JOHNSON W.Performance and design investigation of heavy lift tilt-rotor with aero-dynamic interference effects[J].Journal of aircraft,2009,46(4):1231-1239.

[57] 朱庆镇.倾转旋翼机总体参数优化设计[D].南京:南京航空航天大学,2011.

[58] 左正新.倾转旋翼机总体参数选择与设计优化[D].南京:南京航空航天大学,2016.

[59] 周琪琛,李春华.高速四倾转旋翼机总体参数优化设计研究[J].直升机技术,2016(01):1-6.

[60] BYE D.Influences of notional requirements on aircraft design[C]//Aircraft De-sign,Systems,and Operations Meeting,1993:3996.

[61] 40th Annual Student Design Competition 2022-2023 Request for Proposals (RFP) High- Speed Vertical Takeoff and Landing (HSVTOL) Aircraft[EB/OL].[2024-11-10].https://vtol.org/files/dmfile/rfp_sikorskyhvstol_40thsdc_2022-23_final.pdf.

[62] SAEED F.Aircraft propulsion 2ed edition,Chichester[M].United Kingdom:John Wiley & Sons Ltd.,2014.

[63] MURTHY S,CURRAN E.Development in high-speed vehicle propulsion systems[M].Re-ston,VA(USA):AIAA Inc.,1996:1-332.

[64] EL-SAYED A F.Aircraft propulsion and gas turbine engines[M].New York(USA):CRC Press,2008:1-853.

[65] RONALD S F.A century of ramjet propulsion technology evolution.Journal of Propulsion and Power[J].Journal of propulsion and power,2004,20(1):27-58.

[66] WILLIAM H H,DAVID T P,DANIEL H D,et al.Hypersonic airbreathing propulsion[M].Reston,VA(USA):AIAA Inc.,1994:1-562.

[67] GORDON C O.Aerothermodynamics of gas turbine and rocket propulsion 3rd edition[M].Reston,VA(USA):AIAA Inc.,1997:121-372.

[68] ROY G D,FROLOV S M,BORISOV A A,et al.Pulse detonation propulsion: challeng-es,current status,and future perspective[J].Progress in Energy & Combustion Sci-ence,2004,30(6):545-672.

[69] HEISER W H,PRATT D T.Thermodynamic Cycle Analysis of Pulse Detonation Engines[J].Journal of Propulsion & Power,2002,18(1):68-76.

[70] AIAA Air Breathing Propulsion Technical Committee.The versatile affordable advanced turbine engine (VAATE) initia-tive[EB/OL].[2024-11-10].https://www.aiaa.org/docs/default-source/uploadedfiles/issues-and-advocacy/policy-papers/position-papers/2006-vaate.pdf.

[71] Office of the Secretary of Defense.Joint vision 2020[EB/OL].(2006-07-10)[2024-11-10].https://www.dtic.mil/jointvision/jv2020.doc.

[72] GEIS J P,PARNELL G S,NEWTON H,et al.Blue Horizons Study Assesses Future Capabilities and Technologies for the United States Air Force[J].Interfaces,2011,41(4):338-353.

[73] JOHN A S.Air Force Strategy Study 2020-2030[M].Air University Press,Air Force Research Institute,2011.

[74] COHEN R S.USAF Strategic master plan[R].Washington:Secretary of the Air Force Public Affairs Command Information,2015.

[75] AF Releases future operating concept[R].Washington:Secretary of the Air Force Public Affairs Command Information,2015.

[76] Enterprise Capability Collaboration Team.Air superiority 2030 flight plan[R].Washington:Secretary of the Air Force Public Affairs Command Information,2016.

[77] 梁春华,索德军,孙明霞.美国第6代战斗机发动机关键技术综述[J].航空发动机,2016,42(2):93-97.

[78] General Electric Company.GE details sixth-gen combat engine research plan[EB/OL].(2015-01-29)[2024-11-10].https//aviationweek.com/defense-space/ge-details-sixth-generation-adaptive-fighter-engine-plan.

[79] STEINMETZ R B,HINES B G.Engine Variable Geometry Effects on Commercial Supersonic Transport Development[C]//23rd Joint Propulsion Conference,1987:2101.

[80] BROWN R.Integration of a Variable Cycle Engine Concept in a Supersonic Cruise Air-craft[C]//14th joint propulsion conference.2013:1049.

[81] ALLAN R D.Definition Study of a Variable Cycle Experimental Engine (VCEE) and Associat-ed Test Program and Test Plan: NASACR-159419[R].NASA Lewis Research Center,1978.

[82] VDOVIAK J W,THACKERAY M J.Definition Study for Variable Cyclel Engine Testbed En-gine and Associated Test Program: NASACR-159459[R].NASA Lewis Research Cen-ter,1978.

[83] FRENCH M W,ALLEN G L.NASA VCE Test Bed Engine Aerodynamic Performance Charac-teristics and Test Results[C]//17th Joint Propulsion Conference.1981:1594.

[84] HURTLE J E,TOOT P D,WANGER R P.Full Authority Digital Electronic Control (FADEC) -Variable Cycle Engine Demonstration[C]//17th Joint Propulsion Conference.1981:1498.

[85] General Electric F120[EB/OL].[2024-11-10].https://janes.ihs.com/CustomPages/Janes/DisplayPage.aspxDocType=FileName&ItemId=JAE_0307&Pubabbrev=JAE_.

[86] 陈光.航空发动机结构设计分析[M].北京:北京航空航天大学出版社,2014.

[87] JOHNSON J E.Variable cycle engine developments[J].Developments in High-Speed-Vehicle Propulsion Systems,1995,165.

[88] BELLIN A I,BROOKS A.Status report:DARPA/NASA convertible turbofan/turboshaft engine program[R].ASME Paper 83-GT-196,1983.

[89] 陈玉春,贾琳渊,任成,等.涡轴涡扇组合循环发动机:CN206694149U[P].2018-06-19.

[90] DETORE J and CONWAY S,Technology needs for high-speed rotorcraft(3): NAS2-13072[R].Moffett Field,CA:NASA Ames Research Center,1991.

[91] LEE M K,LEE I.Performance Enhancement of Tilt-Rotor Unmanned Aerial Vehicle Using Na-celle-Fixed Auxiliary Wing[J].Journal of Aircraft,2013,50(1):319-324.

[92] KAMBAMPATI S,SMITH E C.Aeroelastic Optimization of High-Speed Tiltrotor Wings with Wing Extensions and Winglets[J].Journal of Aircraft,2017,54(5):1-10.

[93] NICOLAI L M,CARICHNER G E.Fundamentals of aircraft and airship design volume I-aircraft design[M].Reston,VA(USA):AIAA Inc.,2010:1-667.

[94] MATTINGLY J D,WILLIAM H H,DAVID T P.Aircraft engine design 2nd edition[M].Reston,Virginia(USA):AIAA Inc.,2002:3-229.

[95] NAM T.A generalized sizing method for revolutionary concepts under probabilistic design constraints[D].Georgia(USA):Georgia Institute of Technology,2007.

[96] 张呈林,郭才根.直升机总体设计[M].北京:国防工业出版社,2006.

[97] 王适存.直升机空气动力学[M].北京:航空专业教材编审组,1985.

[98] JOHNSON W.Rotorcraft Aeromechanics[J].Journal of the American Helicopter Society,2013,58(3):1.

[99] LEISHMAN G J.Principles of helicopter aerodynamics with CD extra[M].United King-dom:Cambridge university press,2006.

[100] 马松,谭建国,王光豪,等.基于飞发一体化的自适应循环发动机参数优化研究[J].推进技术,2018,39(08):1703-1711.

[101] EDKINS D P,HIRSCHKRON R,LEE R.TF-34 Turbofan Quiet Engine Study[R].Massachusetts/Cincinnati,Ohio:General Electric Company Aircraft Engine Group,1972.

[102] MCARDLE J G.Outdoor Test Stand Performance of a Convertible Engine with Variable Inlet Guide Vanes for Advanced Rotorcraft Propulsion[R].Cleveland:NASA Lewis Research Cen-ter,1986.

[103] 纪创,汪勇,王召广,等.轴扇转换式发动机最优转换点串行优化设计方法[J].推进技术,2024,1-13.

[104] SEDDON J M.Basic Helicopter Aerodynamics[M].Chichester,United Kingdom:John Wiley & Sons,2011.

[105] BACCHINI A.Electric VTOL preliminary design and wind tunnel tests[D].Politecnico di Torino,2020.

[106] SNYDER C A,THURMAN D R.Gas Turbine Characteristics for a Large Civil Tilt-Rotor (LCTR)[C]//AHS International 65th Annual Forum and Technology Display,2010.

[107] GUR O,MASON W H,SCHETZ J A.Full-Configuration Drag Estimation[J].Journal of Aircr-aft,2010,47(4):1356-1367.

[108] SCOTT M,SUTTON J.Technology needs for high-speed rotorcraft:NAS2-13058[R].NASA,1990.

[109] BOLKCOM C,KNIGHT W.V-22 osprey tilt-rotor aircraft[C]//Congressional Research Ser-vice,Library of Congress,2001.

[110] ROSENSTEIN H,CLARK R.Aerodynamic development of the V-22 tilt rotor[C]//Aircraft Systems,Design and Technology Meeting,1986:2678.

[111] Pratt & Whitney,F135 Engine Characteristics[EB/OL].[2024-11-10].https://f135engine.prattwhitney.com/overview/characteristics.html.

[112] HARRIS C D.NASA supercritical airfoils: A matrix of family-related air-foils:NASA-TP-2969[R].NASA,1990.

[113] KULFAN B M,BUSSOLETTI J E.Fundamental parametric geometry representations for air-craft component shapes: AIAA 2006-6948[R].Portsmouth,VA:AIAA,2006.

[114] 钱晓强.临近空间高速飞机概念设计工具集开发[D].南京:南京航空航天大学,2020.

[115] HOWE D.Aircraft Conceptual Design Synthesis[M].London,UK:Professional Engineering Publishing,2000.

[116] SHEEHAN T A,Kimball D F.V-22 Validation Sirnulation (VMS#3) Final Test Re-port:Bell-Boeing Report 901-985-007[R].Bell-Boeing,1985.

[117] RAYMER D P.Aircraft design:a conceptual approach and rds-Student[J].Software for Air-craft Design,Sizing,and Performance Set,AIAA Education,AIAA,2006.

[118] CHAPPELL D P.Methodology for Estimating Wing Weights for Conceptual Tilt-Rotor and Tilt-Wing Aircraft[C]//Society of Allied Weight Engineers 51st Annual Confer-ence.Hartford,Connecticut,1992.

[119] CARLA N S,DAHLIA D P,SIENA W.Evaluation of VSPAERO Analysis Capabilities for Conceptual Design of Aircraft with Propeller-Blown Wings[C]//AIAA Aviation 2021 Fo-rum,2021:2510.

[120] ONERA M6 Wing[EB/OL].[2024-11-15].https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing.html.

[121] 顾诵芬.飞机总体设计[M].北京:北京航空航天大学出版社,2001.

[122] 曹芸芸.倾转旋翼飞行器飞行动力学数学建模方法研究[D].南京:南京航空航天大学,2012.

[123] JOHNSON W.Helicopter Theory[M]. Mineola,USA:Dover Publications Inc.,1994.

[124] CARLSON E B,ZHAO Y Y,CHEN R T N.Optimal tiltrotor runway operations in one engine inoperative[C]//Guidance,Navigation,and Control Conference and Exhibit,1999:3961.

[125] HWANG S,KIM Y,LEE M K.Tilt Rotor-Wing Concept for Multi-Purpose VTOL UAV[J].International Journal of Aeronautical & Space Sciences,2007,8(1):87-94.

中图分类号:

 V221    

馆藏号:

 2025-001-0054    

开放日期:

 2025-09-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式