- 无标题文档

题名:

 基于速率分割多址的上行无蜂窝大规模 MIMO系统性能研究    

作者:

 朱津津    

学号:

 SX2104079    

保密级别:

 公开    

语种:

 chi    

学科代码:

 081001    

学科:

 工学 - 信息与通信工程    

学生类型:

 硕士    

学位:

 工学硕士    

入学年份:

 2021    

学校:

 南京航空航天大学    

院系:

 电子信息工程学院/集成电路学院    

专业:

 信息与通信工程    

研究方向:

 通信理论及其应用    

导师姓名:

 虞湘宾    

导师单位:

 电子信息工程学院/集成电路学院    

完成日期:

 2025-01-15    

答辩日期:

 2025-03-13    

外文题名:

 

Research on the Performance of Uplink Cell-Free Massive MIMO Systems Based on Rate-Splitting Multiple Access
 

    

关键词:

 无蜂窝 ; 速率分割多址 ; 有限前传容量 ; 可达速率 ; 空间相关性
 
;     

外文关键词:

 Cell-Free ; Rate Splitting Multiple Access ; Limited Fronthaul Capacity ; Achievable Rate ; Spatial Correlation
 
;     

摘要:

随着第六代(6th generation, 6G)移动通信系统的研究与发展,无蜂窝大规模多输入多输出(Cell Free massive Multiple Input Multiple Output, CF-mMIMO)系统作为一项关键的候选技术受到了广泛关注。CF-mMIMO系统能够解决传统蜂窝网络所固有的边界效应,从而为服务区内的用户提供相对均匀的服务质量。速率分割多址(Rate Splitting Multiple Access, RSMA)作为未来无线通信系统的关键技术之一,能够灵活地管理干扰与噪声,且具有较好的用户公平性与海量连接性。二者的有机结合(RSMA-CF-mMIMO)有望在降低干扰的同时保证大规模接入,从而实现较高的数据速率与系统吞吐量。此外,接入点(Access Point, AP)与中央处理器之间容量有限的前传链路,以及AP处的硬件质量都是影响系统性能的重要因素。基于此,本文研究了上行RSMA-CF-mMIMO系统在有限前传容量下的系统性能。本论文的主要工作如下:

1. 研究了上行RSMA-CF-mMIMO系统在瑞利信道下的系统性能。考虑不完全的信道状态信息,以及有限前传容量的限制,基于率失真理论,对前传噪声进行了建模与推导。采用最大比合并方案,分别推导了采用和未采用大尺度衰落译码时,用户可达速率的理论表达式。通过仿真结果验证了理论分析的准确性,并分析了用户数量、导频长度、功率分配因子对系统性能的影响。

2. 研究了上行RSMA-CF-mMIMO系统在空间相关莱斯信道下的系统性能。采用局部散射模型引入了AP处多天线的空间相关性,并给出了莱斯信道下的MMSE信道估计。随后经过理论推导,给出了用户的可达速率,通过仿真评估了AP数量、空间相关性和前传容量等因素对系统性能的影响。结果表明,空间相关性将会为系统带来性能损失,而莱斯信道由于视距分量的存在,其性能通常要优于瑞利信道的对应情形。

3. 研究了低精度模数转换器(Analog to Digital Converter, ADC)下,上行RSMA-CF-mMIMO系统的性能。首先,通过加性量化噪声模型来描述低精度ADC对导频符号与数据符号的影响。推导了存在低精度ADC量化的MMSE信道估计,随后对经历过低精度ADC量化的数据符号进行最大比合并,从而推导出用户的可达速率。仿真结果表明,低精度ADC会降低信道估计质量,并带来非零的估计误差下限。此外,由于低精度ADC的影响,空间相关性对系统性能的影响将变弱。

外摘要要:

With the research and development of the 6th generation (6G) mobile communication system, Cell-Free massive Multiple Input Multiple Output (CF-mMIMO) systems have garnered widespread attention as a key candidate technology. CF-mMIMO systems can address the inherent boundary effects of traditional cellular networks, thereby providing relatively uniform service quality for users within the coverage area. Rate Splitting Multiple Access (RSMA), as one of the key technologies for future wireless communication systems, can flexibly manage interference and noise while offering better user fairness and massive connectivity. The organic combination of these two technologies (RSMA-CF-mMIMO) holds the potential to reduce interference while ensuring large-scale access, thus achieving higher data rates and system throughput. Furthermore, the limited capacity of the fronthaul link between the access point (AP) and the central processing unit, as well as the hardware quality at the AP, are significant factors affecting system performance. Based on the above, this thesis investigates the system performance of the uplink RSMA-CF-mMIMO system under limited fronthaul capacity. The main work of this thesis is as follows:

The system performance of the uplink RSMA-CF-mMIMO system under Rayleigh fading channels is studied. Considering imperfect channel state information (CSI) and fronthaul capacity constraints, a rate-distortion theoretic approach is employed to model and derive the fronthaul noise. By adopting the maximum ratio combining (MRC) scheme, theoretical expressions for the achievable user rate are derived for both cases: with and without large-scale fading decoding. Simulation results validate the accuracy of the theoretical analysis and further investigate the impact of key system parameters, including the number of users, pilot sequence length, and power allocation factor, on system performance.

The performance of the uplink RSMA-CF-mMIMO system under spatially correlated Rician fading channels is studied. A local scattering model is introduced to characterize the spatial correlation among multiple antennas at the APs, and the minimum mean square error (MMSE) channel estimation under Rician fading is derived. Based on the theoretical analysis, the achievable user rate expressions are obtained. Simulations are conducted to evaluate the impact of key factors such as the number of APs, spatial correlation, and fronthaul capacity. Results demonstrate that spatial correlation deteriorates system performance, while the presence of a line-of-sight (LoS) component in Rician fading generally leads to better performance compared to the Rayleigh fading case.

The performance of the uplink RSMA-CF-mMIMO system employing low-resolution Analog-to-Digital Converters (ADCs) is investigated. First, the effect of low-resolution ADCs on both pilot and data symbols is characterized using an additive quantization noise model. The MMSE channel estimation under quantization effects is derived, followed by the application of MRC to the quantized data symbols to obtain the achievable user rate. Simulation results reveal that low-resolution ADCs degrade channel estimation quality and introduce a non-zero lower bound on estimation errors. Moreover, the impact of spatial correlation on system performance diminishes due to the presence of low-resolution ADCs.

参考文献:

[1] 曾军梅. 5G时代数字传播环境下的“多媒体广告”市场营销模式研究[J]. 商业经济, 2021(6): 62-63+112.

[2] 于洋. 5G通信技术在消防救援工作中的应用展望[J]. 消防界(电子版), 2021, 7(16): 67-68.

[3] 解宝新, 王俊宏. 5G技术在“智慧煤矿”场景化应用研究[J]. 中国新通信, 2021, 23(3): 107-108.

[4] 阎密. 5G技术在智慧城市中的融合应用探究[J]. 智慧中国, 2023(12): 58-60.

[5] 罗晓哲. 5G通信技术推动物联网产业链发展分析[J]. 数字通信世界, 2019(3): 136.

[6] Jiang W, Han B, Habibi M A, et al. The Road Towards 6G: A Comprehensive Survey[J]. IEEE Open Journal of the Communications Society, 2021, 2: 334-366.

[7] 尤肖虎, 王承祥, 黄杰. 6G 研究白皮书[R]. 东南大学,紫金山实验室, 2020.

[8] Donald V H M. Advanced Mobile Phone Service: The Cellular Concept[J]. The Bell System Technical Journal, 1979, 58(1): 15-41.

[9] Young W R. Advanced Mobile Phone Service: Introduction, Background, and Objectives[J]. The Bell System Technical Journal, 1979, 58(1): 1-14.

[10] Özlem Tugfe Demir, Emil Björnson, Luca Sanguinetti. Foundations of User-Centric Cell-Free Massive MIMO[M]. now, 2021.

[11] Ngo H Q, Ashikhmin A, Yang H, et al. Cell-Free Massive MIMO Versus Small Cells[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1834-1850.

[12] 3GPP. Study on Downlink Multiuser Superposition Transmission (MUST) for LTE: TR 36.859, V13.0.0[R]. 2015.

[13] 3GPP. Study on Non-Orthogonal Multiple Access (NOMA) for NR: TR 38.812, V16.0.0[R]. 2018.

[14] Clerckx B, Mao Y, Jorswieck E A, et al. A Primer on Rate-Splitting Multiple Access: Tutorial, Myths, and Frequently Asked Questions[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(5): 1265-1308.

[15] Mao Y, Dizdar O, Clerckx B, et al. Rate-Splitting Multiple Access: Fundamentals, Survey, and Future Research Trends[J]. IEEE Communications Surveys & Tutorials, 2022, 24(4): 2073-2126.

[16] Clerckx B, Mao Y, Schober R, et al. Rate-Splitting Unifying SDMA, OMA, NOMA, and Multicasting in MISO Broadcast Channel: A Simple Two-User Rate Analysis[J]. IEEE Wireless Communications Letters, 2020, 9(3): 349-353.

[17] Femenias G, Riera-Palou F. Fronthaul-Constrained Cell-Free Massive MIMO With Low Resolution ADCs[J]. IEEE Access, 2020, 8: 116195-116215.

[18] Parida P, Dhillon H S, Molisch A F. Downlink Performance Analysis of Cell-Free Massive MIMO with Finite Fronthaul Capacity[C]//2018 IEEE 88th Vehicular Technology Conference (VTC-Fall). 2018: 1-6.

[19] Ngo H Q, Ashikhmin A, Yang H, et al. Cell-Free Massive MIMO: Uniformly Great Service for Everyone[C]//2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). 2015: 201-205.

[20] Zhang Y, Cao H, Zhong P, et al. Location-Based Greedy Pilot Assignment for Cell-Free Massive MIMO Systems[C]//2018 IEEE 4th International Conference on Computer and Communications (ICCC). 2018: 392-396.

[21] Interdonato G, Ngo H Q, Frenger P, et al. Downlink Training in Cell-Free Massive MIMO: A Blessing in Disguise[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5153-5169.

[22] Björnson E, Sanguinetti L. Making Cell-Free Massive MIMO Competitive With MMSE Processing and Centralized Implementation[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 77-90.

[23] Björnson E, Sanguinetti L. Cell-Free versus Cellular Massive MIMO: What Processing is Needed for Cell-Free to Win?[C]//2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). 2019: 1-5.

[24] Abdallah A, Mansour M M. Efficient Angle-Domain Processing for FDD-Based Cell-Free Massive MIMO Systems[J]. IEEE Transactions on Communications, 2020, 68(4): 2188-2203.

[25] Özdogan Ö, Bjöornson E, Zhang J. Cell-Free Massive MIMO with Rician Fading: Estimation Schemes and Spectral Efficiency[C]//2018 52nd Asilomar Conference on Signals, Systems, and Computers. 2018: 975-979.

[26] Özdogan Ö, Björnson E, Zhang J. Performance of Cell-Free Massive MIMO With Rician Fading and Phase Shifts[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5299-5315.

[27] Nayebi E, Ashikhmin A, Marzetta T L, et al. Precoding and Power Optimization in Cell-Free Massive MIMO Systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(7): 4445-4459.

[28] Masoumi H, Emadi M J. Performance Analysis of Cell-Free Massive MIMO System With Limited Fronthaul Capacity and Hardware Impairments[J]. IEEE Transactions on Wireless Communications, 2020, 19(2): 1038-1053.

[29] Maryopi D, Burr A. Few-Bit CSI Acquisition for Centralized Cell-Free Massive MIMO with Spatial Correlation[C]//2019 IEEE Wireless Communications and Networking Conference (WCNC). 2019: 1-6.

[30] Bashar M, Cumanan K, Burr A G, et al. Cell-Free Massive MIMO with Limited Backhaul[C]//2018 IEEE International Conference on Communications (ICC). 2018: 1-7.

[31] Maryopi D, Bashar M, Burr A. On the Uplink Throughput of Zero Forcing in Cell-Free Massive MIMO With Coarse Quantization[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 7220-7224.

[32] Bashar M, Cumanan K, Burr A G, et al. Max–Min Rate of Cell-Free Massive MIMO Uplink With Optimal Uniform Quantization[J]. IEEE Transactions on Communications, 2019, 67(10): 6796-6815.

[33] Bashar M, Akbari A, Cumanan K, et al. Exploiting Deep Learning in Limited-Fronthaul Cell-Free Massive MIMO Uplink[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1678-1697.

[34] Bashar M, Cumanan K, Burr A G, et al. On the Energy Efficiency of Limited-Backhaul Cell-Free Massive MIMO[C]//ICC 2019 - 2019 IEEE International Conference on Communications (ICC). 2019: 1-7.

[35] Parida P, Dhillon H S. Cell-Free Massive MIMO With Finite Fronthaul Capacity: A Stochastic Geometry Perspective[J]. IEEE Transactions on Wireless Communications, 2023, 22(3): 1555-1572.

[36] Zhang J, Wei Y, Björnson E, et al. Performance Analysis and Power Control of Cell-Free Massive MIMO Systems With Hardware Impairments[J]. IEEE Access, 2018, 6: 55302-55314.

[37] Zheng J, Zhang J, Zhang L, et al. Efficient Receiver Design for Uplink Cell-Free Massive MIMO With Hardware Impairments[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4537-4541.

[38] Elhoushy S, Hamouda W. Performance of Distributed Massive MIMO and Small-Cell Systems Under Hardware and Channel Impairments[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8627-8642.

[39] Hu X, Zhong C, Chen X, et al. Rate Analysis and ADC Bits Allocation for Cell-Free Massive MIMO Systems with Low Resolution ADCs[C]//2018 IEEE Global Communications Conference (GLOBECOM). 2018: 1-6.

[40] Hu X, Zhong C, Chen X, et al. Cell-Free Massive MIMO Systems With Low Resolution ADCs[J]. IEEE Transactions on Communications, 2019, 67(10): 6844-6857.

[41] Zhang Y, Yang L, Zhu H. Cell-Free Massive MIMO Systems With Low-Resolution ADCs: The Rician Fading Case[J]. IEEE Systems Journal, 2022, 16(1): 1471-1482.

[42] Zhang Y, Cao H, Zhou M, et al. Rate Analysis of Cell-Free Massive MIMO with One-Bit ADCs and DACs[C]//2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). 2019: 1-6.

[43] Clerckx B, Joudeh H, Hao C, et al. Rate Splitting for MIMO Wireless Networks: A Promising PHY-layer Strategy for LTE evolution[J]. IEEE Communications Magazine, 2016, 54(5): 98-105.

[44] Joudeh H, Clerckx B. Sum-Rate Maximization for Linearly Precoded Downlink Multiuser MISO Systems With Partial CSIT: A Rate-Splitting Approach[J]. IEEE Transactions on Communications, 2016, 64(11): 4847-4861.

[45] Mao Y, Clerckx B, Li V O K. Rate-Splitting Multiple Access for Downlink Communication Systems: Bridging, Generalizing, and Outperforming SDMA and NOMA[J]. EURASIP Journal on Wireless Communications and Networking, 2018, 2018(1): 133.

[46] Rimoldi B, Urbanke R. A Rate-Splitting Approach to The Gaussian Multiple-Access Channel[J]. IEEE Transactions on Information Theory, 1996, 42(2): 364-375.

[47] Katwe M, Singh K, Clerckx B, et al. Rate Splitting Multiple Access for Sum-Rate Maximization in IRS Aided Uplink Communications[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2246-2261.

[48] Flores A R, De Lamare R C, Mishra K V. Rate-Splitting Meets Cell-Free MIMO Communications[C]//2022 IEEE International Conference on Communications Workshops (ICC Workshops). 2022: 657-662.

[49] Park S H, Lee H, Hong S E. Rate-Splitting Multiple Access With Conjugate Beamforming for Cell-Free MIMO[C]//2022 13th International Conference on Information and Communication Technology Convergence (ICTC). 2022: 1258-1260.

[50] Yu D, Park S H, Simeone O, et al. Robust Design of Rate-Splitting Multiple Access With Imperfect CSI for Cell-Free MIMO Systems[C]//2022 IEEE International Conference on Communications Workshops (ICC Workshops). 2022: 604-609.

[51] Si S, Tan F. Max-Min Rate Optimization in Cell-Free Massive MIMO Systems Using RSMA Scheme[C]//2023 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC). 2023: 1-3.

[52] Galappaththige D, Tellambura C. Sum Rate Maximization for RSMA-Assisted CF mMIMO Networks With SWIPT Users[J]. IEEE Wireless Communications Letters, 2024: 1-1.

[53] Huang Y, Jiang Y, Zheng F C, et al. Enhancing Energy-Efficient URLLC in Cell-Free mMIMO Systems With Transceiver Impairments: An RSMA-DRL Based Approach[J]. IEEE Wireless Communications Letters, 2024: 1-1.

[54] Zhang Y, Zhao H, Mao Y, et al. Rate-Splitting Multiple Access in Cell-Free Massive MIMO-URLLC Systems: Achievable Rate Analysis and Optimization[J]. IEEE Transactions on Communications, 2024, 72(11): 6752-6767.

[55] Zheng Q, Zhu P, Li J, et al. On the Spectral and Energy Efficiency of RSMA-Based Cell-Free Systems[J]. IEEE Transactions on Vehicular Technology, 2024: 1-6.

[56] Zheng J, Zhang J, Cheng J, et al. Asynchronous Cell-Free Massive MIMO With Rate-Splitting[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(5): 1366-1382.

[57] 3GPP. Technical Specification Group Services and System Aspects: TR 21.915 V0.4.0[R]. 2018: 27-28.

[58] 张尧. 去蜂窝大规模 MIMO 系统分析与设计研究[D]. 南京邮电大学, 2021.

[59] Bai Q, Mezghani A, Nossek J A. On the Optimization of ADC Resolution in Multi-antenna Systems[C]//ISWCS 2013; The Tenth International Symposium on Wireless Communication Systems. 2013: 1-5.

[60] Fan L, Jin S, Wen C K, et al. Uplink Achievable Rate for Massive MIMO Systems With Low-Resolution ADC[J]. IEEE Communications Letters, 2015, 19(12): 2186-2189.

[61] Saad W, Bennis M, Chen M. A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems[J]. IEEE Network, 2020, 34(3): 134-142.

[62] Xu J, Dizdar O, Clerckx B. Rate-Splitting Multiple Access for Short-Packet Uplink Communications: A Finite Blocklength Analysis[J]. IEEE Communications Letters, 2023, 27(2): 517-521.

[63] Khisa S, Elhattab M, Arfaoui M A, et al. Power Allocation and Beamforming Design for Uplink Rate-Splitting Multiple Access with User Cooperation[J]. IEEE Transactions on Vehicular Technology, 2024: 1-6.

[64] Yang Z, Chen M, Saad W, et al. Sum-Rate Maximization of Uplink Rate Splitting Multiple Access (RSMA) Communication[C]//2019 IEEE Global Communications Conference (GLOBECOM). 2019: 1-6.

[65] Zhu J, Xie M. Spectral Efficiency of Cell-Free Massive MIMO with Superimposed Pilots Over Spatially Correlated Rician Fading Channels[C]//2023 IEEE 23rd International Conference on Communication Technology (ICCT). 2023: 20-25.

[66] Ngo H Q, Tataria H, Matthaiou M, et al. On the Performance of Cell-Free Massive MIMO in Ricean Fading[C]//2018 52nd Asilomar Conference on Signals, Systems, and Computers. 2018: 980-984.

[67] Björnson E, Hoydis J, Sanguinetti L. Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency[J]. Foundations and Trends® in Signal Processing, 2017, 11(3-4): 154-655.

[68] Zhang J, Fan J, Ai B, et al. NOMA-Based Cell-Free Massive MIMO Over Spatially Correlated Rician Fading Channels[C]//ICC 2020 - 2020 IEEE International Conference on Communications (ICC). 2020: 1-6.

[69] Fan W, Zhang J, Bjornson E, et al. Performance Analysis of Cell-Free Massive MIMO Over Spatially Correlated Fading Channels[C]//ICC 2019 - 2019 IEEE International Conference on Communications (ICC). 2019: 1-6.

[70] Zhou M, Zhang Y, Qiao X, et al. Spatially Correlated Rayleigh Fading for Cell-Free Massive MIMO Systems[J]. IEEE Access, 2020, 8: 42154-42168.

[71] Polegre A Á, Riera-Palou F, Femenias G, et al. Channel Hardening in Cell-Free and User-Centric Massive MIMO Networks With Spatially Correlated Ricean Fading[J]. IEEE Access, 2020, 8: 139827-139845.

[72] Walden R H. Analog-to-Digital Converter Survey and Analysis[J]. IEEE Journal on Selected Areas in Communications, 1999, 17(4): 539-550.

[73] Wang H, Sun C, Li J, et al. Joint Optimization of Spectral Efficiency and Energy Efficiency with Low-Precision ADCs in Cell-Free Massive MIMO Systems[J]. Sci. China Inf. Sci, 2022, 65(5): 1-15.

[74] Verenzuela D, Björnson E, Matthaiou M. Hardware design and optimal ADC resolution for uplink massive MIMO systems[C]//2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM). 2016: 1-5.

[75] Zhang Y, Yang L, Zhu H. Cell-Free Massive MIMO Systems With Low-Resolution ADCs: The Rician Fading Case[J]. IEEE Systems Journal, 2022, 16(1): 1471-1482.

[76] Xie M, Yu X, Xu J, et al. Low-Complexity Channel Estimation Scheme for Cell-Free Massive MIMO with Hardware Impairment[C]//GLOBECOM 2022 - 2022 IEEE Global Communications Conference. 2022: 711-716.

[77] Kim I soo, Bennis M, Choi J. Cell-Free mmWave Massive MIMO Systems With Low-Capacity Fronthaul Links and Low-Resolution ADC/DACs[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 10512-10526.

中图分类号:

 TN929.5    

馆藏号:

 2025-004-0189    

开放日期:

 2025-09-29    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式