- 无标题文档

中文题名:

 60kW航空APU改地面燃气轮机工程    

姓名:

 张亿力    

学号:

 BZ1802901    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085272    

学科名称:

 工学 - 能源动力 - 燃气轮机工程    

学生类型:

 博士    

学位:

 工学博士    

入学年份:

 2018    

学校:

 南京航空航天大学    

院系:

 能源与动力学院    

专业:

 机械工程(专业学位)    

第一导师姓名:

 胡骏    

第一导师单位:

 能源与动力学院    

完成日期:

 2023-11-14    

答辩日期:

 2024-03-14    

外文题名:

 

A Project of 60kW Ground Gas Turbine Derived from Aero APU

    

中文关键词:

 60KW ; 燃气轮机 ; 微型燃气轮机发电机组 ; 航改燃 ; 低成本     

外文关键词:

 60kW ; Micro gas turbine ; Generator set ; Derived from  ; aeroengine ; APU ;   ; Low cost     

中文摘要:

燃气轮机的发展代表着国家重大装备制造业的总体水平,是国家高新技术与科技实力的重要标志之一。微型燃气轮机发电机组(简称微燃机)是一种清洁高效、低成本、高可靠的供能系统,得到了高度关注和迅速发展。相比于传统柴油发电机,微燃机可以提供快速起动、清洁、安静与高效的电力,并且体积小、重量轻而又便于移动,机动性好,除了用于军用车辆的辅机电站外,带有回热器的高效微燃机发电机组还可用于分布式发电、冷热电联供、车辆混合动力装置等领域,因此市场前景非常广阔。由航空发动机改型燃气轮机,具有投资少、周期短、见效快、效率高、经济性好、可靠性高、使用维护方便等优势,是微小型燃气轮机研制的重要技术途径。

本文在国内首次对小型航空APU改型成地面燃气轮机研制过程中的关键工程技术问题开展了研究:

在目前较为成熟的当量功率70kW左右的气压型辅助动力装置基础上,本文继承了航机的结构布局,并结合地面燃机的特点,重新设计了压气机,验证了涡轮的适应性,并对燃烧室进行了适应性试验;同时,全新设计了控制系统和燃油系统,并选配高速永磁发电机,形成了一型低成本、高可靠性、界面友好的60kW燃气轮机发电机组。

在总体性能设计中,采用了正反命题相结合的方法,以流通能力为标准进行部件参数分配。这种方法从总体设计方面入手,通过优化设计,尽可能沿用原航机零部件,从而减少了航改燃工作量。

在总体结构设计中,首次应用了叠片式弹性支承技术。该支承技术成本低、可靠性高,有效降低了临界转速,避开了共振区间。这一创新设计为燃气轮机的总体结构设计带来了更加可靠、稳定的支撑。

在压气机重新设计的过程中,创新采用了开槽外环装置来提高离心压气机的喘振裕度。采用这种装置可以减少燃气轮机的起动时间,从而提高装备的响应速度,对于提高装备的整体性能具有重要意义。

在燃油控制系统中首次采用了高速电磁阀作为燃油计量装置,并匹配设计了整个燃油系统。这种燃油系统供油稳定,控制精度高,实现了低成本与高可靠性的结合。

在机组集成中创新使用了起发一体高速永磁电机,实现了机组的高紧凑性,减少了附件数量,最终降低了成本。这一做法使得机组集成更加紧凑、高效,并且减少了附件数量和成本,从而提高了整体性能和使用寿命。

本文研制的航改型微燃机满足了非航空燃气轮机低成本、高可靠性等要求,突破了小型APU航改燃的关键技术。

外文摘要:

The development of gas turbines represents the overall level of the country's major equipment manufacturing industry and is one of the important symbols of the country's high-tech and technological strength. Compared with the traditional Diesel generator, the micro gas turbine can provide fast start, clean, quiet and efficient power, and is small in size, light in weight, easy to move, and has good mobility. In addition to being used in the auxiliary power station of Military vehicle, the high-efficiency micro gas turbine generator set with a heat exchanger can also be used in the fields of distributed power generation, combined cooling, heating and power supply, vehicle hybrid power devices, etc., so the market prospect is very broad. Transforming from an aviation engine to a gas turbine has advantages such as low investment, short cycle time, fast efficiency, high efficiency, good economy, high reliability, and convenient use and maintenance. It is an important technical approach for the development of micro gas turbines.

This article is the first to conduct research on key engineering and technical issues in the development process of retrofitting small aviation APUs into ground gas turbines in China:

On the basis of the relatively mature pneumatic auxiliary power device with an equivalent power of about 70kW, this article inherits the structural layout of the aircraft and redesigns the compressor based on the characteristics of the ground gas turbine, verifies the adaptability of the turbine, and conducts adaptability tests on the combustion chamber; At the same time, a new control system and fuel system have been designed, and a high-speed permanent magnet generator has been selected, forming a low-cost, high reliability, and user-friendly 60kW gas turbine generator set.

In the overall performance design, a combination of positive and negative propositions was used for the overall performance design, and component parameters were allocated based on the flow capacity. This method starts from the overall design aspect, optimizes the design, and tries to use the original aircraft components as much as possible, thereby reducing the workload of aviation modification.

In the overall structural design, the laminated elastic support technology was first applied. This support technology has low cost and high reliability, effectively reducing the critical speed and avoiding the resonance range. This innovative design provides more reliable and stable support for the overall structural design of gas turbines.

In the process of redesigning the compressor, a slotted outer ring device was innovatively adopted to improve the surge margin of the centrifugal compressor. Adopting this device can reduce the starting time of the gas turbine, thereby improving the response speed of the equipment, which is of great significance for improving the overall performance of the equipment.

For the first time in the fuel control system, high-speed solenoid valves were used as fuel metering devices, and the entire fuel system was matched and designed. This fuel system has stable fuel supply and high control accuracy, achieving a combination of low cost and high reliability.

In the integration of the unit, an innovative use of a high-speed permanent magnet motor with integrated starting and starting functions has been achieved, achieving high compactness of the unit, reducing the number of accessories, and ultimately reducing costs. This approach makes the unit integration more compact and efficient, and reduces the number and cost of accessories, thereby improving overall performance and service life.

The aviation modified micro gas turbine developed in this article meets the requirements of low cost and high reliability for non aviation gas turbines, breaking through the key technology of small APU aviation modified fuel.

参考文献:

[1]李孝堂.燃气轮机的发展及中国的困局[J].航空发动机,2011,37(03):1-7.

[2]孟晓波,武文涛,孙远伟.航改燃机总体设计问题技术研究[A].2017第十九届中国科协年会[C],2017

[3]李孝堂.发展中的中国一航燃气轮机产业[J].航空发动机,2006,(02):14-16.

[4]彭友梅.航空百年话动力[J].南京航空航天大学学报(社会科学版),2003,(04):4-8.

[5]施磊,李孝堂.中国航改燃气轮机的现状及发展[J].航空发动机,2004,(02):54-58.

[6]陈玉洁.新型航改燃气轮机技术在地面发电中的应用[J].燃气涡轮试验与研究,2012,25(S1):52-54.

[7]沈迪刚,张致君.航机改型燃气轮机的应用与发展[J].航空发动机,1999(4):52~63.

[8]David Sidenstick;Glenn McAndrews;Ravi Tanwar;Scott Farley.Development, Testing, and Qualification of the Marine LM6000 Gas Turbine[A].ASME Turbo Expo 2006: Power for Land, Sea, and Air[C],2006

[9]李孝堂,梁春华. 世界航改舰船用燃气轮机的发展趋势[J],航空科学技术.2011,06:4~7.

[10]张均享.30年来装甲装备动力发展与展望[J].国外坦克(特刊),2009,10:48~52.

[11]William D. Jones, Albion R. Fletcher. ELECTRIC DRIVES ON THE LV100 GAS TURBINE ENGINE, ASME Headquarters until September 30,1993.

[12]Angelo V. Koschier, Hagen R. Mauch. Advantages of the LV100 as a power producer in a hybrid porpul sys for future fighting vehicles, ASME Headquarters until September 30, 1999.

[13]WALTER BROCKETT, ANGELO KOSCHIER. LV100 AIPS Technology For future Army Propulsion, International Gas Turbine and Aeroengine Congress and Exposition, Germany June 1~4, 1992.

[14]R. Oonsivilai, A. Oonsivilai. Gas Turbine Optimal PID Tuning by Genetic Algorithm using MSE, International Scholarly and Scientific Research & Innovation 5(12) 2011.

[15]郭正祥.柴油机坦克与燃气轮机坦克优劣剖析, 国外坦克. 2009,03:37~44.

[16]张均享.俄罗斯坦克装甲车辆动力的发展[J].国外坦克,2008(12):43~47.

[17]周平.辅机在自行火炮上的应用[J].现代兵器,1988(02):3~6.

[18]张卫东.霍尼维尔LV50混合式电传动发动机完成首次试验[J].车用发动机,2004(01):50.

[19]王军良.美M1坦克将安装新型燃气轮机[J].国外坦克,2001(09):37~38.

[20]周贻荃.美国AIPS规划的进展[J].现代兵器,1990(01):7~11.

[21]张均享.美国坦克装甲车辆动力的发展[J].国外坦克,2009(01):46~49.

[22]李荣枝.美国为M1A2主战坦克研制新型发动机[J].国外坦克,2000(04):38~39.

[23]朱正,田小燕.小型燃气轮机为动力的辅机电站技术[J].车辆与动力技术,2004(01):52~55.

[24]戴韧.微型燃气轮机及其“混合动力”的技术进展[J].热力透平,2005(01):7~11.

[25]和彬彬. 以微型燃气轮机为核心的先进能量系统研究[D].华北电力大学(北京),2010.

[26]徐庆邮.微型燃气轮机的发展和技术特点[J].电世界,2010,51(04):52~53.

[27]徐庆邮.微型燃气轮机的发展、技术特点及市场应用[J].上海电力,2009,22(05):355~357.

[28]王凯,黄葆华,田云峰.微型燃气轮机在分布式供能中应用的可行性研究[J].华北电力技术,2011(05):1~5+15.

[29]张宏杰,仝云峰,栾兰.某型微型燃气轮机控制器研制[J].科技与企业,2011(13):142.

[30]谭汉清.国外微型涡喷发动机应用现状及未来发展趋势[J].飞航导弹,2013(03):76~80.

[31]段建东,吴凤江,赵克,孙力.回热循环微型燃气轮机全工况状态反馈控制[J].电工技术学报,2014,29(03):213~221.

[32]周剑波. 变几何涡轴发动机综合控制技术研究[D].南京航空航天大学,2011.

[33]王秋霞,樊丁,彭凯.AMESim仿真技术在高速电磁阀中的应用[J].航空动力学报,2014,29(03):702~707.

[34]李斌,艾勇军.高速数字电磁阀的控制研究[J].硅谷,2014,7(13):13+20.

[35]开文杰. 航空发动机起动建模及控制规律优化研究[D].南京航空航天大学,2017.

[36]周丽萍,彭凯,王雅云,易升. 某航空发动机起动控制规律优化设计研究[A]. 中国航空学会.探索 创新 交流——第六届中国航空学会青年科技论坛文集(下册)[C].中国航空学会:中国航空学会,2014:5.

[37]彭凯,樊丁,卜振鹏,李杰,尹飞佳.航空发动机燃油分布器故障分析与参数优化[J].推进技术,2011,32(02):276~281.

[38]周振华,罗畅敏,周龙,蒋安常,杜丛霖.基于PWM控制的燃油调节器执行元件匹配特性研究[J].燃气涡轮试验与研究,2019,32(04):43~47.

[39]王琼,吴惠,夏光,张维.基于PWM控制模式的高速开关阀开关特性分析及优化[J].合肥工业大学学报(自然科学版),2016,39(09):1199~1204.

[40]冯志远. 基于电磁阀电流闭环控制的柴油机电控系统设计及实现[D].电子科技大学,2018.

[41]滕攀. 基于通流计算下的涡轴发动机总体性能研究[D].南京航空航天大学,2019.

[42]袁鹏. 涡轴发动机气动性能改进研究及离心叶轮改型设计[D].南京航空航天大学,2007.

[43]邓飞. 先进涡轴发动机总体性能设计研究[D].南京航空航天大学,2013.

[44]柴博,刘娇,李文华.一种新型电液控制系统的建模与分析[J].测控技术,2016,35(08):81~84.

[45]金洪江. 某改型航空涡轴发动机建模与性能匹配[D].南京航空航天大学,2009.

[46]强国芳.关于我国舰船动力未来发展的若干思考[J].燃气轮机技术,1995(02):12~16.

[47]林汝谋,金红光.国内外燃气轮机的发展和应用[J].电世界,2006,47(01):47~49.

[48]冷步里.航空发动机改为船用动力的若干问题初探[J].燃气涡轮试验与研究,1999(03):3~5.

[49]郑定泰.WR—21舰用燃气轮机[J].现代舰船,1994(10):17~18.

[50]潘文林.21世纪的澎湃动力 从新型水面舰艇看舰用燃气轮机的发展[J].舰载武器,2010(02):47~72.

[51]张宗科,陈德娟.美国气垫登陆艇推进垫升系统的改进与发展[J].船舶,2015,26(05):12~23.

[52]李孝堂,梁春华.世界航改舰船用燃气轮机的发展趋势[J].航空科学技术,2011(06):4~7.

[53]王世安,吴穷,王军,吉桂明.船用燃气轮机技术的发展方向及我国发展途径的思考[J].热能动力工程,2011,26(04):379~382+488.

[54]王立庚.试论船用燃气轮机的技术发展途径[J].舰船科学技术,1980(08):29~34.

[55]Gas Turbine Performance. Philip P Walsh,Paul Fletcher. Blackwell Science . 2000

[56]GasTurb 10 Technical Reference. J. Kurzke. 2004.

[57]赵士杭编著.燃气轮机循环与变工况性能[M].北京:清华大学出版社,1993.

[58]朱行健. 燃气轮机工作原理及性能,国防工业出版社,1991.

[59]茅文焯. 小型发电燃气轮机回热器的应用,2000,2(3~4):60~66.

[60]J.Kurzke, GasTurb10 User’s Manual, 2004.

[61]J.Kurzke, Compressor and turbine maps for gas turbine performance computer programs,2004.

[62]晏砺堂,朱梓根,宋兆泓,等. 结构系统动力特性分析[M].北京:北京航空航天大学出版社, 1989: 256~257.

[63]洪杰,邓吟,张大义. 弹性环式挤压油膜阻尼器动力设计方法[J]. 北京航空航天大学学报,2006,32(6):649~653.

[64]闻邦椿, 顾家柳, 夏松波,等.高等转子动力学[M].北京: 机械工业出版社,1999: 270~272.

[65]刘展翅,廖明夫,丛佩红,王娟,王四季,石斌,李岩. 航空发动机转子挤压油膜阻尼器设计方法[J]. 航空动力学报,2015,30(11):2762~2770.

[66]王屏,刘方杰. 挤压油膜阻尼器失效边界探索[J]. 强度与环境,1998(3):28~34.

[67]周明,李其汉,晏砺堂. 弹性环式挤压油膜阻尼器实验研究与应用[J]. 航空动力学报,1998,13(4):408~412.

[68]王四季,廖明夫,杨伸记. 主动式弹支干摩擦阻尼器控制转子振动的实验[J]. 航空动力学报,2007,22(11):1893~1897.

[69]廖明夫,丛佩红,王娟,何云,高雄兵,宋明波. 航空发动机转子振动的“热模态”和减振设计[J]. 航空动力学报,2015,30(05):1125~1140.

[70]黎亮. 弹支及挤压油膜阻尼器在压气机试验件上的应用[J]. 燃气涡轮试验与研究,1996(4):1~7.

[71]范天宇,廖明夫,王俨剀.弹性支承干摩擦阻尼器减振实验研究[J]. 机械科学与技术,2005,24(9):1062~1065.

[72]周明,倪维斗,于文虎. 燃气轮机用弹支多孔油膜阻尼器调频减振的研究[J]. 清华大学学报(自然科学版),1999,39(3):34~36.

[73]李兵,程定春,江志敏. 弹性环式挤压油膜阻尼器-转子系统动力特性试验研究[J].燃气涡轮试验与研究,2015,28(4):19~22.

[74]吕二立,周亚峰,张轲等.航改燃气轮机技术发展[J].航空动力,2023,(04):15-18.

[75]高洁,银越千,李杜等.坦克装甲车辆航改燃气轮机动力技术[J].车辆与动力技术,2022,(03):47-51.DOI:10.16599/j.cnki.1009-4687.2022.03.003

[76]李敏,吴赛峰.舰用航改燃气轮机技术应用及发展思路[J].航空动力,2022,(04):25-28.

[77]王博涵.航改燃气轮机燃料灵活性初步研究[D].中国科学院大学(中国科学院工程热物理研究所),2020.DOI:10.27540/d.cnki.ggrws.2020.000025

[78]潘春霖.某航改燃气轮机前支承结构设计[D].大连理工大学,2018.

[79]薛玮,张力辉.舰用航改燃气轮机通用控制系统研制及应用[J].航空发动机,2016,42(04):8-11.DOI:10.13477/j.cnki.aeroengine.2016.04.002

[80]刘太秋,聂海刚.航改燃气轮机高低压压气机匹配技术研究[J].航空发动机,2013,39(04):19-25.

[81]陈玉洁.新型航改燃气轮机技术在地面发电中的应用[J].燃气涡轮试验与研究,2012,25(S1):52-54.

[82]罗保洋,祝培旺,吕洪坤等.微型燃气轮机的动态建模与优化控制研究[J/OL].中国电机工程学报,1-10[2023-12-25]https://doi.org/10.13334/j.0258-8013.pcsee.231492.

[83]王新寓.微型燃气轮机发电系统启发一体过程的控制技术及仿真分析[J].黑龙江科学,2023,14(12):81-83.

[84]孙雁君.微型燃气轮机系统建模与滑模控制方法研究[D].东南大学,2022.DOI:10.27014/d.cnki.gdnau.2022.001387

[85]邹桐煊.基于3D打印的微燃机关键零部件设计制造研究[D].南昌航空大学,2022.DOI:10.27233/d.cnki.gnchc.2022.000379

[86]曾维伦,王旭升,吕小静等.基于模糊PID的微型燃气轮机发电机组控制性能研究[J].热能动力工程,2021,36(10):212-221.DOI:10.16146/j.cnki.rndlgc.2021.10.028

[87]Stefan aus der Wiesche,A Mobile Test Rig for Micro GasTurbines Based on a Thermal Power Measurement Approach,Journal of Engineering for Gas Turbines and Power,NOVEMBER 2012, Vol. 134 / 112301-1

[88]Wang H, Luo KH. Aerothermal Performance and Soot Emissions of Reacting Flow in a Micro-Gas Turbine Combustor. Energies. 2023; 16(7):2947.

[89]Rajeevalochanam, P., Vinod Kumar, N., Agnimitra Sunkara, S.N., Sharma, N., Shashidhar, S., Jai Maruthi, R. (2023). Development of Test Bench for Micro Gas Turbine Engine. In: Sivaramakrishna, G., Kishore Kumar, S., Raghunandan, B.N. (eds) Proceedings of the National Aerospace Propulsion Conference. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-2378-4_11

[90]van Eck, H., van der Spuy, S. & Gannon, A. (2023). Expanding the choke margin of a mixed flow compressor stage for a micro gas turbine engine. International Journal of Turbo & Jet-Engines. https://doi.org/10.1515/tjj-2022-0060

[91]De Robbio R. Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources. Energies. 2023; 16(2):704. https://doi.org/10.3390/en16020704

[92]Liu Y, Nikolaidis T, Madani SH, Sarkandi M, Gamil A, Sainal MF, Hosseini SV. Multi-Fidelity Combustor Design and Experimental Test for a Micro Gas Turbine System. Energies. 2022; 15(7):2342. https://doi.org/10.3390/en15072342

[93]R. Ravi and K. D. Minto, "LV100 gas turbine control: a case study," Proceedings of 1994 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, USA, 1994, pp. 1598-1602 vol.2, doi: 10.1109/CDC.1994.411214.

[94]Reyhaneh Banihabib, Timo Lingstädt, Magnus Wersland, Peter Kutne, Mohsen Assadi,Development and testing of a 100 kW fuel-flexible micro gas turbine running on 100% hydrogen,International Journal of Hydrogen Energy,Volume 49, Part B,2024,Pages 92-111,ISSN 0360-3199,https://doi.org/10.1016/j.ijhydene.2023.06.317.

[95]张亿力,李生文,李久山等.微型燃气轮机发电机组[P].湖南省:CN110273758B,2020-12-08.

[96]张亿力,杨家礼,杨怡模.燃气轮机发电机组转子组件和燃气轮机发电机组[P].湖南省:CN110645097B,2020-10-09.

[97]张亿力,杨家礼,刘秀芳等.燃气轮机转子支撑机构及带有该支撑机构的燃气轮机[P].湖南省:CN104005797B,2015-12-30.

[98]张亿力,周进,黄舜等.双排开槽外环及机匣处理机构[P].湖南:CN202833326U,2013-03-27.

[99]张亿力,杨家礼,黎纲等.弹性支承结构、轴承支承结构及应用该结构的燃气轮机[P].湖南:CN202152796U,2012-02-29.

中图分类号:

 TK472    

馆藏号:

 2024-002-0294    

开放日期:

 2024-11-04    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式