- 无标题文档

题名:

 导弹集群智能微分博弈协同制导研究    

作者:

 杨知沐    

学号:

 SZ2203054    

保密级别:

 公开    

语种:

 chi    

学科代码:

 085406    

学科:

 工学 - 电子信息 - 控制工程    

学生类型:

 硕士    

学位:

 专业学位硕士    

入学年份:

 2022    

学校:

 南京航空航天大学    

院系:

 自动化学院    

专业:

 电子信息(专业学位)    

导师姓名:

 张绍杰    

导师单位:

 自动化学院    

完成日期:

 2025-01-15    

答辩日期:

 2025-03-09    

外文题名:

 

Research on Intelligent Cooperative Guidance of Missile Cluster Based on Differential Game

    

关键词:

 协同制导 ; 微分博弈 ; 自适应动态规划 ; 滑模控制     

外文关键词:

 Cooperative guidance ; Differential Game (DG) ; Adaptive Dynamic Programming (ADP) ; Sliding mode control     

摘要:

导弹集群技术在军事领域的应用是广泛的。深入研究导弹集群技术是改变未来作战模式单一、提升系统整体作战效能的有效手段。本文针对导弹集群打击机动目标的场景,考虑实际制导过程中集群系统可能面临的网络攻击和外源干扰等外部非理想因素及建模误差、领弹战损、弹间碰撞等内部限制性因素,结合自适应动态规划(Adaptive Dynamic Programming, ADP)、最优控制、滑模控制等控制方法,开展了基于微分博弈(Differential Game, DG)的导弹集群分布式协同制导技术研究。具体内容如下:
针对导弹多对一追逃系统目标可识别来袭进行躲避、集群计算量大和弹间易发生碰撞的问题,开展基于DG的集散式避撞协同制导律研究。首先,将集群中的智能体分为领弹和从弹,针对领弹和目标,构建双方博弈对抗性能指标函数,结合ADP技术在线求解追逃双方最优控制策略。然后,基于多智能体一致性理论和代数图论,结合滑模控制法,实现从弹间的分布式协同,并利用Lyapunov法证明稳定性。最后,采用人工势场法(Artificial Potential Field, APF) 实现整个集群系统导弹间的避撞。仿真验证了当目标采取最优机动时,本文所提制导律的有效性。
针对因领弹故障导致的集群系统崩溃和APF方法的局部极小值问题,提出了一种去中心化的DG避撞协同制导律和策略融合机制。将DG与一致性编队理论结合,改进性能指标,实现去中心化,并利用Lyapunov法证明稳定性。针对单个目标面对多方追击者时存在多个逃逸策略难以确定的问题,通过设计兴趣函数,将各单一逃逸策略动态加权,提出了策略融合机制。最后引入动态调节因子改进APF,避免局部极小值的出现。仿真结果验证了所提制导律的有效性。

针对多弹协同制导系统存在部分参数未知和外部扰动的问题,设计了有限时间收敛的三阶滑模非线性扩张状态观测器。将滑模控制方法与扩张状态观测器(Extended State Observer, ESO)相结合,构建了一种新型固定时间收敛的滑模面和滑模趋近律,有效提高了观测器的跟踪速度和精度。利用Lyapunov函数验证了观测器的固定收敛时间,并对系统受扰动时的估计误差进行分析。仿真结果表明,与传统ESO相比,所提出的滑模非线性扩张状态观测器在性能上有显著提高。

外摘要要:

The application of missile cluster technology in military operations is significant, offering a way to transform future combat and enhance system effectiveness. This paper explores distributed cooperative guidance technology for missile clusters attacking mobile targets, considering external factors like network attacks and internal issues such as modeling errors and missile collisions. Utilizing Adaptive Dynamic Programming (ADP), optimal control, and sliding mode control, the study focuses on Differential Game (DG) based strategies.
A distributed collision-avoidance guidance law using DG is developed to address challenges like target identification and missile collisions. The approach divides the cluster into lead and slave agents, constructs a game performance index, and uses ADP for optimal control. Multi-agent consistency and sliding mode control facilitate distributed cooperation, with stability confirmed via Lyapunov methods. The Artificial Potential Field (APF) method ensures collision avoidance, validated through simulations.
A decentralized DG collision-avoidance guidance law and strategy fusion mechanism are proposed to address cluster collapse and APF local minima. DG is combined with formation theory, and decentralization is achieved by improving the performance index. ADP solves the optimal control strategy online, with stability proven via Lyapunov. A strategy fusion mechanism dynamically weights escape strategies using an interest function, and a dynamic regulator enhances APF to avoid local minima. Simulations validate the guidance law's effectiveness.
A third-order sliding mode nonlinear extended state observer with finite time convergence is designed to solve the problem of unknown parameters and external disturbance in multi-missile cooperative guidance system. By combining the sliding mode control method with the Extended State Observer (ESO), a new sliding mode surface and the sliding mode reaching law with fixed time convergence are constructed, which effectively improves the tracking speed and accuracy of the observer. The fixed convergence time of the observer is verified by Lyapunov function, and the estimation error is analyzed when the system is disturbed. Simulation results show that compared with traditional ESO, the performance of the proposed sliding mode nonlinear extended state observer is significantly improved.

参考文献:

[1] 李勇,张顺家,朱玉虎, 等. 2023年美俄典型机载导弹发展动态与趋势分析[J]. 空天防御, 2024, 7(04): 30-37.

[2] 卫长竖,赵斌,赵瑞, 等. 线偏差控制的协同机动突防、导引与控制一体化[J].宇航学报,2024,45(06):924-934.

[3] 唐浩楠,唐志共,郭继峰, 等. 一种分布式协同拦截制导方法及半实物仿真验证[J].宇航学报,2024,45(04):580-589.

[4] 张尧, 阎岩, 顾新. 网火导弹武器系统发展综述[J]. 飞航导弹, 2016, 2: 39-42.

[5] 宋俊红. 拦截机动目标的有限时间制导律及多弹协同制导律研究[D]. 哈尔滨工业大学, 2018.

[6] X. K. Wang, Z. W. Zeng, Y. R. Cong. Multi-agent distributed coordination control: Developments and directions via graph viewpoint[J]. Neurocomputing, 2016, 199: 204-218.

[7] X. H. Ge, Q. L. Han, D. R. Ding, et al. A survey on recent advances in distributed sampled-data Cooperative differential games guidance control of multi-agent systems[J]. Neurocomputing, 2018, 275: 1684-1701.

[8] J. L. Sun, T. Long. Event-triggered distributed zero-sum differential game for nonlinear multi-agent systems using adaptive dynamic programming[J]. ISA transactions, 2021, 110: 39-52.

[9] Z. C. Liu, H. Q. Hang, J. H. Park, et al. Adaptive fuzzy control for unknown nonlinear multi-agent systems with switching directed communication topologies[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(7): 2487-2494.

[10] Z. W. Yan, L. Han, X. D. Li, et al. Event-triggered formation control for time-delayed discrete-time multi-agent system applied to multi-UAV formation flying[J]. Journal of the Franklin Institute, 2023, 360(5): 3677-3699.

[11] Z. K. Wang, Y. W. Fang, W. Fu, et al. Prescribed-time cooperative guidance law against manoeuvring target with input saturation[J]. International Journal of Control, 2023, 96(5): 1177-1189.

[12] H. B. Luo, G. Y. Tan, H. Yan, et al. Cooperative line-of-sight guidance with optimal evasion strategy for three-body confrontation[J]. ISA transactions, 2023, 133: 262-272.

[13] J. L. Yu, X. W. Dong, Q. D. Li, et al. Distributed adaptive cooperative time-varying formation tracking guidance for multiple aerial vehicles system[J]. Aerospace Science and Technology, 2021, 117: 1-17.

[14] Y. A. Zhang, X. L. Wang, H. L. Wu. A distributed cooperative guidance law for salvo attack of multiple anti-ship missiles[J]. Chinese Journal of Aeronautics, 2015, 28(5): 1438-1450.

[15] S. Zhai, X. Q. Wei, J. Y. Yang. Cooperative guidance law based on time-varying terminal sliding mode for maneuvering target with unknown uncertainty in simultaneous attack[J]. Journal of the Franklin Institute, 2020, 357(16): 11914-11938.

[16] 王雨辰, 王伟, 林时尧, 等. 考虑攻击时间及空间角度约束的三维自适应滑模协同制导律设计[J]. 兵工学报, 2023, 44(09): 2778-2790.

[17] X. H. Liang, B. Xu, K. H. Jia, et al. Adaptive NN control of integrated guidance and control systems based on disturbance observer[J]. Journal of the Franklin Institute, 2023, 360(1): 65-86.

[18] M. C. Ma, S. M. Song. Three-dimensional prescribed performance cooperative guidance law with spatial constraint for intercepting manoeuvring targets[J]. International Journal of Control, 2023, 96(6): 1424-1435.

[19] M. Nikusokhan, H. Nobahari. Closed-form optimal cooperative guidance law against random step maneuver[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1):319-336.

[20] X. Q. Wei, J. Yang. Cooperative guidance laws for simultaneous attack against a target with unknown maneuverability[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(7): 2518-2535.

[21] 杨鹤鸣, 李勇, 梁伟栋, 等. 基于协同空域封锁的反导拦截弹最优中制导律研究[J]. 战术导弹技术, 2023, 6: 83-92.

[22] H. Jiang, Z. An, Y. N. Yu, et al. Cooperative guidance with multiple constraints using convex optimization[J]. Aerospace science and technology, 2018, 79: 426-440.

[23] X. J. Lan, J. D. Chen, Z. J. Zhao, et al. Cooperative Guidance of Multiple Missiles: A Hybrid Coevolutionary Approach[J]. IEEE Transactions on Control Systems Technology, 2023, 32(1): 128 - 142.

[24] E. Garcia, D. W. Casbeer, M. Pachter. Cooperative strategies for optimal aircraft defense from an attacking missile[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(8): 1510-1520.

[25] 佟京昊. 高度关注集群智能发展—应对无人作战对现代战争的深刻改变[J]. 军民两用技术与产品, 2020, 11: 12-14.

[26] 孙昱,周京京,魏耀聪, 等. 基于人工势场的配送无人机集群动态航迹规划[J].军事交通学报,2022, 6: 80-85.

[27] 信义兵,黄立,刘荣华, 等. 某轮式战车导弹行进间发射动力学特性研究[J].火力与指挥控制,2023,48(7):177-181.

[28] 赵世钰, 周锐. 基于协调变量的多导弹协同制导[J]. 航空学报,2008, 6: 1605-1611.

[29] S. R. Kumar, D. Ghose. Impact time and angle control guidance[C]. AIAA Guidance, Navigation, and Control Conference, 2015.

[30] S. I. Jeon, J. I. Lee, M. J. Tahk. Homing guidance law for cooperative attack of multiple missiles[J]. Jounal of Guidance, Control, and Dynamics, 2010, 33(1): 275-280.

[31] 李桂英, 于志刚, 张扬. 带有角度约束的机动目标拦截协同制导律[J]. 系统工程与电子技术, 2019, 41(3): 626-635.

[32] J. H. Song, S. M. Song, S. L. Xu. Three-dimensional cooperative guidance law for multiple missiles with finite-time convergence[J]. Aerospace Science and Technology, 2017, 67: 193-205.

[33] Q. L. Zhao, X. W. Dong, Z. X. Liang, et al. Distributed group cooperative guidance for multiple missiles with fixed and switching directed communication topologies[J]. Nonlinear Dynamics, 2017, 90(4): 2507-2523.

[34] Q. L. Zhao, X. W. Dong, Z. X. Liang, et al. Distributed cooperative guidance for multiple missiles with fixed and switching communication topologies[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1570-1581.

[35] 张杰, 刘开蓉, 陈金宝, 等. 基于空间对抗的多智能体编队控制方法[J]. 系统工程与电子技术, 2024, 46(6): 2082-2091.

[36] Y. W. Cui, A. J. Li, X. F. Meng. A fault-tolerant control method for distributed flight control system facing wing damage[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1041-1052.

[37] 张瑜, 吴凯, 郭杰, 等. 基于数据质量评估的自适应序贯航迹关联算法[J]. 系统工程与电子技术, 2022, 44(11): 3477-3485.

[38] H. Guo, Z. Wang, B Fu, et al. Impact angle constrained fuzzy adaptive fault tolerant IGC method for Ski-to-Turn missiles with unsteady aerodynamics and multiple disturbances[J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1210-1226.

[39] 周晶, 赵晓哲, 许震, 等. 基于D-NSGA-Ⅲ算法的无人机群高维多目标任务分配方法[J]. 系统工程与电子技术, 2021, 43(5):1240-1247.

[40] 郭志强,周绍磊,于运治. 拦截机动目标的范数型协同微分对策制导律[J]. 计算机仿真, 2020, 37(3): 23-26.

[41] 郭志强, 孙启龙, 周绍磊, 等. 主动防御飞行器的范数型微分对策制导律[J]. 北京航空航天大学学报, 2019, 45(9):1787-1796.

[42] 王宁宇, 苏山, 崔乃刚, 等. 基于微分对策的多飞行器协同最优分配方法[J].战术导弹技术,2021(6):130-138.

[43] J. L. Sun, C. S. Liu, Q. Ye. Robust differential game guidance laws design for uncertain interceptor-target engagement via adaptive dynamic programming [J]. International Journal of Control, 2016, 90(5): 990-1004.

[44] F. Liu, X. W. Dong, Q. D. Li, et al. Cooperative differential games guidance laws for multiple attackers against an active defense target [J]. Chinese Journal of Aeronautics, 2022, 35(5): 374-389.

[45] T. Chao, X. T. Wang, S. Y. Wang, et al. Linear-quadratic and norm-bounded differential game combined guidance strategy against active defense aircraft in three-player engagement[J]. Chinese Journal of Aeronautics, 2023, 36(8): 331-350.

[46] X. X. Li, M Meng, Y. G. Hong, et al. A survey of decision making in adversarial games[J]. Science China (Information Sciences), 2024, 67(4):141201:1-141201:28.

[47] D. Wang, D. R. Liu, H. L. Li, et al. Neural-network-based robust optimal control design for a class of uncertain nonlinear systems via adaptive dynamic programming [J]. Information Sciences. 2014, 282:167-179.

[48] J. L. Sun, C. S. Liu. Distributed fuzzy adaptive backstepping optimal control for nonlinear multi-missile guidance systems with input saturation[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(3): 447-461.

[49] F. R. Yuan, C. S. Liu, B. L. Chen. Many-to-one pursuit-evasion game strategy based on adaptive dynamic programming[J]. Electronics Optics & Control, 2022, 29(1): 1-6.

[50] J. L. Sun, C. S. Liu. Backstepping-based adaptive dynamic programming for missile-target guidance systems with state and input constraints[J]. Journal of the Franklin Institute, 2018, 355(17): 8412-8440.

[51] C. Li, J. L. Ding, F. L. Lewis, et al. A novel adaptive dynamic programming based on tracking error for nonlinear discrete-time systems [J]. Automatica, 2021, 129(4): 109687.

[52] A. X. Xi, Y. L. Cai, Y. F. Deng, et al. Zero-sum differential game guidance law for missile interception engagement via neuro-dynamic programming [J]. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2023, 237(14): 3352-3366.

[53] Y. P. Liu, C. Cheng, Y. Wang, et al. A fast formation obstacle avoidance algorithm for clustered UAVs based on artificial potential field[J]. Aerospace Science and Technology, 2024, 147(3): 108974.

[54] Y. Suo, X. Chen, J. Yue, et al. An Improved Artificial Potential Field Method for Ship Path Planning Based on AIS-Mined Customary Navigation Routes[J]. Journal of Marine Science and Engineering, 2024, 12(5): 731-750.

[55] Z. Zhang, B. Xue, Z. Ke. Path planning based on improved artificial potential field algorithm[J], Journal of Xi’an University of Technology, 2024, 40(1): 27-35.

[56] F. P. Huang, M. M. Duan, H. F. Su, et al. Distributed Optimal Formation Control of Second-Order Multiagent Systems with Obstacle Avoidance[J]. IEEE Control Systems Letters, 2023,7: 2647-2652.

[57] G. D. Wang, X. Y. Wang, S. H. Li. A Guidance Module Based Formation Control Scheme for Multi-Mobile Robot Systems with Collision Avoidance[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(1): 382-393.

[58] S. Hanawa, M. Matsumoto. Obstacle Avoidance Behavior Combining Dodging Control and Movable Soft Material[J]. IEEE Sensors Letters, 2023, 7(8): 1-4.

[59] Y. S. Tang, H. X. Chen, Z. Y. Ma, et al. Application of artificial potential field method in three-dimensional path planning for UAV considering 5G communication[J]. IEEE Access, 2024, 12: 79238-79250.

[60] H. Zargarzadeh, T. Dierks, S. Jagannathan. Adaptive neural network-based optimal control of nonlinear continuous-time systems in strict-feedback form[J]. International Journal of Adaptive Control and Signal Processing, 2014, 28(3-5): 305-324.

[61] H. Zargarzadeh, T. Dierks, S Jagannathan. Optimal control of nonlinear continuous-time systems in strict-feedback form[J], IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10): 2535-2549.

[62] H. Zargarzadeh, T. Dierks, S Jagannathan. State and output feedback-based adaptive optimal control of nonlinear continuous-time systems in strict feedback form[C]. American Control Conference, 2012: 6412-6417.

[63] K. G. Vamvoudakis, F. L. Lewis. Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem[J]. Automatica, 2010; 46(5): 878-888.

[64] W. Ren, R. W. Beard. Consensus seeking in multi-agent systems under dynamically changing interaction topologies[J]. IEEE Transactions on Automatic Control, 2005, 50(5): 665-671.

[65] S. H. Yu, X. H. Yu, B Shirinzadeh. Continuous finite-time control for robotic manipulators with terminal sliding modes[J]. Automatica, 2005, 41(11): 1957-1964.

[66] P. Zhang, J. Zhang, J. Yang, et al. Resilient Event-Triggered Adaptive Cooperative Fault-Tolerant Tracking Control for Multiagent Systems Under Hybrid Actuator Faults and Communication Constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 3021-3037.

[67] M. Liu, Z. Z. Su, J. F. Zhu, et al. Flight analysis and optimization design of vectored thrust eVTOL based on cooperative flight/propulsion control[J]. Aerospace Science and Technology, 2024, 149:109143.

[68] Z. Wang, H. Wang, J. Yuan, et al. Bio-Inspired Cooperative Control Scheme of Obstacle Avoidance for UUV Swarm[J]. Journal of Marine Science and Engineering, 2024, 12(3): 489-508.

[69] J. Zhai, J. Yang. Cooperative guidance laws for interception of active maneuvering target under information symmetric and asymmetric conditions[J]. International Journal of Control, 2024, 97(2): 316-330.

[70] F. Lin, S. He, J. Wang, et al. On virtual leader-follower-based distributed cooperative cluster guidance strategy[J]. Scientia Sinica Technologica, 2020, 50(5): 506-515.

[71] M. Cong, X. Cheng, Z. Zhao, et al. Studies on Multi-Constraints Cooperative Guidance Method Based on Distributed MPC for Multi-Missiles[J]. Applied Sciences, 2021, 11(22): 10857.

[72] D. Hou, B. Chen, Q. Wang, et al. Collision avoidance multi-missile distributed cooperative guidance and control[J]. Control Theory and Technolog, 2014, 31(9): 1133-1142.

[73] W. Li. A dynamics perspective of pursuit-evasion: capturing and escaping when the pursuer runs faster than the agile evader[J]. IEEE Transactions on Automatic Control, 2017, 62(1): 451-457.

[74] Y. Xu, B. Jiang, H. Yang. Two-Level Game-Based Distributed Optimal Fault-Tolerant Control for Nonlinear Interconnected Systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4892-4906.

[75] X. Yang, X. Fan. Distributed formation control for multi-agent systems in the presence of external disturbances[J]. IEEE Access, 2019, 7: 80194-80207.

[76] X. Dong, G. Hu. Time-varying formation control for general linear multi-agent systems with switching directed topologies[J]. Automatica, 2016, 73: 47-55.

[77] Y. Gong, G. Wen, Z. Peng, et al. Observer-Based Time-Varying Formation Control of Fractional-Order Multi-Agent Systems with General Linear Dynamics[J]. IEEE Transactions On Circuits and Systems Part II: Express Briefs, 2020, 67(1): 82-86.

[78] S. Li, J. Zhang, X. Li. Formation Control of Heterogeneous Discrete-Time Nonlinear Multi-Agent Systems with Uncertainties. IEEE Transactions on Industrial Electronics, 2017,64(6): 4730-4740.

[79] R. Wang, X. Dong, Q. Li, et al. Distributed Time-Varying Output Formation Control for General Linear Multiagent Systems with Directed Topology. IEEE Transactions on Control of Network Systems, 2019, 6(2): 609-620.

[80] S. Zuo, Y. Song, F. L. Lewis, et al. Adaptive Output Formation-Tracking of Heterogeneous Multi-Agent Systems Using Time-Varying L2-Gain Design[J]. IEEE Control Systems Letters, 2018, 2(2): 236-241.

[81] H. Su, J. Zhang, X. Chen, et al. A Stochastic Sampling Mechanism for Time-Varying Formation of Multiagent Systems With Multiple Leaders and Communication Delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019,30(12): 3699-3707.

[82] L. Tian, D. Wang, Q. Zhao, et al. Distributed adaptive time-varying output formation tracking for heterogeneous swarm systems[J]. Acta Automatica Sinica, 2021, 47(10): 2386-2404.

[83] H. Zhi, L. Chen, C. Li, et al. Optimal leader-follower affine formation control of linear multi-agent systems[J]. Optimal Control Applications and Methods, 2022, 43(1): 304-320.

[84] G. Wang, X. Wang, S. Li. A Guidance Module Based Formation Control Scheme for Multi-Mobile Robot Systems with Collision Avoidance[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(1): 382-393.

[85] H. M. Vu, M. H. Trinh, Q. V. Tran, et al. Distance-Based Formation Tracking of Single and Double Integrator Agents[J]. IEEE Transactions on Automatic Control, 2024, 69(2): 1332-1339.

[86] J. Zhang, Y. Fu, J. Fu. Adaptive Finite-Time Optimal Formation Control for Second-Order Nonlinear Multiagent Systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2023, 53(10): 6132-6144.

[87] F. Huang, M. Duan, H. Su, et al. Distributed Optimal Formation Control of Second-Order Multiagent Systems With Obstacle Avoidance[J]. IEEE Control Systems Letters, 2023, 7: 2647-2652.

[88] R. Bai, N. Li, C. Wang. Research on Path Planning Algorithm of Unmanned Vehicle Based on Improved Artificial Potential Field Method[J]. Computer Science and Application,2023, 13(4): 698-707.

[89] 宋吉广, 王继铭, 梁利华,等. 舵鳍联合自抗扰主从控制策略设计[J]. 控制理论与应用, 2021, 38(2): 264-274.

[90] N. Gu, D. Wang, Z. H. Peng, et al. Safety-Critical Containment Maneuvering of Underactuated Autonomous Surface Vehicles Based on Neurodynamic Optimization With Control Barrier Functions[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(6): 2882-2895.

[91] Q. Chen, Y. Zhou, S. Ahn, et al. Robustly string stable longitudinal control for vehicle platoons under communication failures: A generalized extended state observer-based control approach[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 159-171.

[92] 刘俊杰, 陈增强, 孙明玮, 等. 自抗扰控制在推力矢量飞机大迎角机动中的应用[J]. 工程科学学报, 2019, 41(9): 1187-1193.

[93] K. Lu, H. Tian, P. Zhen, et al. Conversion flight control fortiltrotor aircraft via active disturbance rejection control[J]. Aerospace, 2022, 9(3): 155-173.

[94] 周涛. 基于反双曲正弦函数的扩张状态观测器[J]. 控制与决策, 2015, 30(05): 943-946.

[95] 孙佃升, 章跃进. 线性扩张状态观测器的改进及观测精度分析[J]. 国防科技大学学报, 2017, 39(6): 111-117.

[96] 孙佃升, 章跃进. 一种抑制初始微分峰值现象的改进型三阶时变参数扩张状态观测器[J]. 电机与控制学报, 2017, 21(9): 55-62.

[97] 蒲明, 刘鹏, 熊皑. Fal函数的改进及3种新型非线性扩张状态观测器[J].控制与决策, 2021, 36(7): 1655-1662.

[98] W. Xu, A. K. Junejo, Y. Liu, et al. An efficient antidisturbance sliding-mode speed control method for PMSM drive systems[J]. IEEE Transactions on Power Electronics, 2020, 36(6): 6879-6891.

[99] 雷城, 蓝益鹏, 徐泽来, 等. 一种新型复合滑模趋近律设计与分析[J]. 控制与决策, 2023, 38(2): 435-440.

[100] 刘京, 李洪文, 邓永停. 基于新型趋近律和扰动观测器的永磁同步电机滑模控制[J]. 工程科学学报, 2017, 39(6): 933-944.

[101] L. Zhang, C. Z. Wei, R. Wu, et al. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle[J]. Aerospace Science and Technology, 2018, 82-83: 70-79.

[102] Y. X. Gao, C. S. Liu, D. D. Duan, et al. Distributed optimal event-triggered cooperative control for nonlinear multi-missile guidance systems with partially unknown dynamics[J]. International Journal of Robust and Nonlinear Control, 2022, 32: 8369-8396.

[103] X. P. Zhu, X. X. Wang, Y. Li, et al. Differential Game-Based Cooperative Interception Guidance Law with Collision Avoidance[J]. Aerospace, 2024, 11(9):771-800.

中图分类号:

 TP13    

馆藏号:

 2025-003-0007    

开放日期:

 2025-09-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式