- 无标题文档

题名:

 面向复杂场景的自动驾驶感知决策与交叉路口控制策略研究    

作者:

 苏洋    

学号:

 BX2002302    

保密级别:

 公开    

语种:

 chi    

学科代码:

 080204    

学科:

 工学 - 机械工程 - 车辆工程    

学生类型:

 博士    

学位:

 工学博士    

入学年份:

 2020    

学校:

 南京航空航天大学    

院系:

 能源与动力学院    

专业:

 机械工程    

研究方向:

 自动驾驶    

导师姓名:

 宋廷伦    

导师单位:

 能源与动力学院    

完成日期:

 2025-04-04    

答辩日期:

 2025-05-24    

外文题名:

 

Research on Perception, Decision-making, and Intersection Control Strategies for Autonomous Driving in Complex Scenarios

    

关键词:

 自动驾驶 ; 目标检测 ; 车道线检测 ; 行为决策 ; 交叉路口控制策略 ; 深度强化学习     

外文关键词:

 Autonomous Driving ; Object Detection ; Lane Line Detection ; Behavior Decision-making ; Intersection Control Strategy ; Deep Reinforcement Learning     

摘要:

随着全球城市化进程的加速推进与汽车保有量的持续增长,交通安全与通行效率等问题日益凸显,自动驾驶技术逐渐成为解决这类问题的核心手段。本文聚焦于复杂遮挡结构化道路场景中的视觉感知与决策规划技术,以及复杂混合交通流交叉路口场景中的协同控制策略,重点针对目标检测、目标测距、车道线检测、行为决策与交叉路口控制策略等关键问题展开系统性研究,具体研究内容如下:

(1)针对复杂遮挡场景中现有目标检测算法无法处理目标中心点重叠的问题,设计了一系列基于中心点检测的目标检测算法,通过优化网络拓扑结构、设计特征融合策略及增强模型整体关联性的方式,有效解决了上述问题,并提升了算法的目标检测精度与推理速度,其AP值达到了52.7%,FPS值达到了187.3。针对单目视觉测距任务中的尺度不确定性问题,设计了一种基于标定表的目标测距算法,相较于传统算法,其纵向测距误差降低了2.23%至7.17%,横向测距误差降低了1.18%至4.59%。

(2)针对复杂遮挡场景中传统车道线检测算法性能不足的问题,提出了一种基于视觉变换器模型架构的去遮挡车道线检测算法。设计重叠图像块划分与先验信息嵌入机制,增强了模型对图像上下文信息与车道线空间特征的理解能力;构建共享主干网络参数的双分支解码器架构,实现了去遮挡图像重建与车道线检测任务的协同优化;提出像素位置敏感的车道线分割损失函数,提升了车道线检测的定位精度。多场景基准测试与硬件在环仿真结果表明,该算法在Tusimple、CULane与CurveLanes三个公开基准数据集上,F1分数分别达到了97.72%、79.50%与86.26%,FPS值均为83.5,为自动驾驶系统提供了可靠的横向定位支持。

(3)针对复杂遮挡结构化道路场景中传统行为决策算法的局限性,提出了一种基于深度强化学习的行为决策算法。构建了多尺度栅格图表征体系,实现了遮挡物体、交通规则与导航路线等多源信息的统一编码;设计了基于双重注意力机制的多模态主干网络,实现了异构状态信息的协同互补;提出了混合多步学习策略与基于规则的风险评估模块,分别提升了模型的训练效率与仿真成功率。仿真结果表明,所提算法与同类型先进算法对比,在保证同等通行效率的前提下,将仿真成功率提升了38.0%,有效降低了复杂遮挡场景中存在的行驶安全隐患。

(4)针对复杂混合交通流交叉路口场景中的协同优化难题,提出了一种行人友好型分层式交叉路口控制策略。通过整合监控摄像头与交通信号灯等现有道路网联基础设施资源,构建了行人动态全局管控框架,实现了行人过街需求的精准预判;设计了分层式中枢,上层构建双延迟深度Q网络动态调控交通信号相位,以适应复杂交通流的变化,下层基于时空预留机制对网联自动驾驶车辆进行协同控制,确保高效、安全的通行。仿真结果表明,该策略在交叉路口场景中,能够有效缩短行人等待时间,并提升整个交通系统的通行效率。

本文的研究成果为复杂交通场景中的自动驾驶视觉感知、行为决策与交叉路口控制策略等任务提供了理论支撑与实践指导,具有重要意义。

外摘要要:

With the accelerated advancement of global urbanization and the continuous growth of vehicle ownership, issues such as traffic safety and travel efficiency have become increasingly prominent. Autonomous driving technology has gradually emerged as a core solution to address these challenges. This thesis focuses on visual perception and decision-making technologies in complex occluded structured road scenarios, as well as collaborative control strategies in mixed traffic flow intersection scenarios. Systematic research was conducted on key technologies including object detection, object ranging, lane line detection, behavior decision-making, and intersection control strategies. The specific research contents are as follows:

(1) To address the limitation of existing object detection algorithms in handling center-overlapping targets in complex occluded scenarios, a series of center-point-based object detection algorithms were designed By optimizing network topology, designing feature fusion strategies, and enhancing model contextual coherence, the proposed algorithms effectively resolved this issue while improving detection accuracy and inference speed, achieving an AP of 52.7% and an FPS of 187.3. For the scale ambiguity problem in monocular visual distance measurement, a calibration table-based distance estimation algorithm was proposed. Compared with traditional methods, it reduced longitudinal distance errors by 2.23%–7.17% and lateral distance errors by 1.18%–4.59%.

(2) To overcome the performance limitations of traditional lane line detection algorithms in complex occluded scenarios, a de-occlusion lane line detection algorithm based on a vision transformer architecture was developed. By designing overlapping image patch division and prior information embedding mechanisms, the model’s understanding of image contextual information and lane spatial features was strengthened. A dual-branch decoder architecture with shared backbone network parameters was constructed to achieve synergistic optimization of occlusion removal and lane line detection. Additionally, a pixel-position-sensitive lane line segmentation loss function was proposed to improve lane line localization precision. Multi-scenario benchmark tests and hardware-in-the-loop simulations demonstrated that the proposed algorithm achieved F1 scores of 97.72%, 79.50%, and 86.26% on the Tusimple, CULane, and CurveLanes datasets, respectively, with an FPS of 83.5, providing reliable lateral positioning support for autonomous driving systems.

(3) To address the shortcomings of traditional behavior decision-making algorithms in complex occluded structured road scenarios, a behavior decision-making algorithm based on deep reinforcement learning was proposed. A multi-scale grid map representation system was constructed to achieve unified encoding of multi-source information including occluded objects, traffic rules, and navigation routes. A dual-attention-based multi-modal backbone network was designed to enable complementary integration of heterogeneous state information. Furthermore, a hybrid multi-step learning strategy and a rule-based risk assessment module were introduced to improve training efficiency and simulation success rates, respectively. Simulation results showed that compared with state-of-the-art algorithms, the proposed method improved the simulation success rate by 38.0% while maintaining comparable travel efficiency, effectively reducing safety risks in complex occluded scenarios.

(4) To tackle the collaborative optimization challenges in mixed traffic flow intersection scenarios, a pedestrian-friendly hierarchical intersection control strategy was proposed. By integrating existing connected road infrastructure resources such as surveillance cameras and traffic signals, a dynamic global pedestrian control framework was established to accurately predict pedestrian crossing demands. A hierarchical control architecture was designed, where the upper layer employed a Double Delayed Deep Q-Network (DD-DQN) to dynamically adjust traffic signal phases in response to complex traffic flow variations, while the lower layer implemented a spatiotemporal reservation mechanism to coordinate connected and autonomous vehicles, ensuring efficient and safe passage. Simulation results demonstrated that the proposed strategy effectively reduced pedestrian waiting times and improved overall traffic efficiency at intersections.

The research results of this thesis provide theoretical support and practical guidance for autonomous driving tasks such as visual perception, behavior decision-making, and intersection control strategies in complex traffic scenarios, demonstrating significant importance.

参考文献:

[1] 国家统计局. 中国统计年鉴[R]. 2024.

[2] Bucsuházy K, Matuchová E, Zůvala R, et al. Human factors contributing to the road traffic accident occurrence[J]. Transportation Research Procedia, 2020, 45: 555-561.

[3] Yurtsever E, Lambert J, Carballo A, et al. A survey of autonomous driving: common practices and emerging technologies[J]. IEEE Access, 2020, 8: 58443-58469.

[4] Zhao J, Zhao W, Deng B, et al. Autonomous driving system: a comprehensive survey[J]. Expert Systems with Applications, 2024, 242: 122836.

[5] Badue C, Guidolini R, Carneiro R V, et al. Self-driving cars: a survey[J]. Expert Systems with Applications, 2021, 165: 113816.

[6] Grigorescu S, Trasnea B, Cocias T, et al. A survey of deep learning techniques for autonomous driving[J]. Journal of Field Robotics, 2020, 37(3): 362-386.

[7] Abdelkader G, Elgazzar K, Khamis A. Connected vehicles: technology review, state of the art, challenges and opportunities[J]. Sensors, 2021, 21(22): 7712.

[8] 张亚勤, 李震宇, 尚国斌, 等. 面向自动驾驶的车路云一体化框架[J]. 汽车安全与节能学报, 2023, 14(3): 249-273.

[9] Ahmed H U, Huang Y, Lu P, et al. Technology developments and impacts of connected and autonomous vehicles: an overview[J]. Smart Cities, 2022, 5(1): 382-404.

[10] Rana Md M, Hossain K. Connected and autonomous vehicles and infrastructures: a literature review[J]. International Journal of Pavement Research and Technology, 2023, 16(2): 264-284.

[11] Damaj I W, Yousafzai J K, Mouftah H T. Future trends in connected and autonomous vehicles: enabling communications and processing technologies[J]. IEEE Access, 2022, 10: 42334-42345.

[12] 中国汽车工程学会. 节能与新能源汽车技术路线图2.0[M]. 北京: 机械工业出版社, 2020.

[13] 朱放. 典型场景下自动驾驶车辆换道决策模型研究[D]. 北京: 北方工业大学, 2024.

[14] 孙康. 智能网联车辆不同智能等级与渗透率场景的协同换道控制策略[D]. 西安: 长安大学, 2023.

[15] 王雪柠, 翟媛, 陈颢. “十五五”我国汽车产业发展趋势简析[J]. 汽车工业研究, 2024(4): 10-12.

[16] Nidamanuri J, Nibhanupudi C, Assfalg R, et al. A progressive review: emerging technologies for ADAS driven solutions[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(2): 326-341.

[17] Society of Automotive Engineers. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles: J3016_202104[S]. 2021.

[18] Chen S, Zong S, Chen T, et al. A taxonomy for autonomous vehicles considering ambient road infrastructure[J]. Sustainability, 2023, 15(14): 11258.

[19] 工业和信息化部. 汽车驾驶自动化分级: GB/T 40429-2021[S]. 2021.

[20] Azak S, Bozkaya F, Tığlıoğlu Ş, et al. A unified monocular vision-based driving model for autonomous vehicles with multi-task capabilities[J]. IEEE Transactions on Intelligent Vehicles, 2024: 1-12.

[21] Bao F, Wang X, Sureshbabu S H, et al. Heat-assisted detection and ranging[J]. Nature, 2023, 619(7971): 743-748.

[22] Engels F, Heidenreich P, Wintermantel M, et al. Automotive radar signal processing: research directions and practical challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 865-878.

[23] Li Y, Ibanez-Guzman J. Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems[J]. IEEE Signal Processing Magazine, 2020, 37(4): 50-61.

[24] Vargas J, Alsweiss S, Toker O, et al. An overview of autonomous vehicles sensors and their vulnerability to weather conditions[J]. Sensors, 2021, 21(16): 5397.

[25] 全国汽车标准化技术委员会. 道路车辆先进驾驶辅助系统(ADAS)术语及定义: GB/T39263-2020[S]. 2020.

[26] Favelli S, Xie M, Tonoli A. Sensor fusion method for object detection and distance estimation in assisted driving applications[J]. Sensors, 2024, 24(24): 7895.

[27] Yang Z, Wang Z, Yan M. An optimization design of adaptive cruise control system based on MPC and ADRC[J]. Actuators, 2021, 10(6): 110.

[28] Jeong Y. Interactive lane keeping system for autonomous vehicles using LSTM-RNN considering driving environments[J]. Sensors, 2022, 22(24): 9889.

[29] Ucińska M. Adaptation to driver-assistance systems depending on experience[J]. Open Engineering, 2021, 11(1): 650-661.

[30] Lengyel H, Tettamanti T, Szalay Z. Conflicts of automated driving with conventional traffic infrastructure[J]. IEEE Access, 2020, 8: 163280-163297.

[31] 刘潇. 面向高速环境的自动驾驶车辆行为决策、规划与控制研究[D]. 杭州: 浙江大学, 2022.

[32] 韩改宁. 城市道路环境下无人驾驶车辆运动规划与控制研究[D]. 西安: 西安理工大学, 2022.

[33] Di Lillo L, Gode T, Zhou X, et al. Comparative safety performance of autonomous-and human drivers: a real-world case study of the waymo driver[J]. Heliyon, 2024, 10(14).

[34] Kim M J, Yu S H, Kim T H, et al. On the development of autonomous vehicle safety distance by an RSS model based on a variable focus function camera[J]. Sensors, 2021, 21(20): 6733.

[35] Talpes E, Sarma D D, Venkataramanan G, et al. Compute solution for tesla’s full self-driving computer[J]. IEEE Micro, 2020, 40(2): 25-35.

[36] 李洪硌. 无人驾驶汽车高速工况智能决策、轨迹规划与跟踪研究[D]. 广州: 华南理工大学, 2020.

[37] 闫相同. 汽车纵向自动驾驶个性化决策方法研究[D]. 长春: 吉林大学, 2024.

[38] 何科. 无人驾驶汽车车道级定位导航系统关键技术研究[D]. 长春: 吉林大学, 2023.

[39] Chen L, Wu P, Chitta K, et al. End-to-end autonomous driving: challenges and frontiers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10164-10183.

[40] Chib P S, Singh P. Recent advancements in end-to-end autonomous driving using deep learning: a survey[J]. IEEE Transactions on Intelligent Vehicles, 2023.

[41] 刘润武. 城市环境下的智能汽车端到端运动规划研究[D]. 合肥: 合肥工业大学, 2023.

[42] Chekroun R, Toromanoff M, Hornauer S, et al. GRI: general reinforced imitation and its application to vision-based autonomous driving[J]. Robotics, 2023, 12(5): 127.

[43] Ohn-Bar E, Prakash A, Behl A, et al. Learning situational driving[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 11293-11302.

[44] Toromanoff M, Wirbel E, Moutarde F. End-to-end model-free reinforcement learning for urban driving using implicit affordances[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 7151-7160.

[45] Huang Z, Liu H, Wu J, et al. Conditional predictive behavior planning with inverse reinforcement learning for human-like autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(7): 7244-7258.

[46] Wen X, Jian S, He D. Modeling the effects of autonomous vehicles on human driver car-following behaviors using inverse reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 13903-13915.

[47] Gao L, Xia X, Zheng Z, et al. GNSS/IMU/LiDAR fusion for vehicle localization in urban driving environments within a consensus framework[J]. Mechanical Systems and Signal Processing, 2023, 205: 110862.

[48] Sun C Z, Zhang B, Wang J K, et al. A review of visual SLAM based on unmanned systems[C]. 2021 2nd International Conference on Artificial Intelligence and Education (ICAIE), 2021: 226-234.

[49] Petrovai A, Nedevschi S. Semantic cameras for 360-degree environment perception in automated urban driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17271-17283.

[50] 曹景伟. 复杂场景下的智能汽车目标检测与跟踪算法研究[D]. 长春: 吉林大学, 2022.

[51] 徐谦. 面向复杂环境自动驾驶的视觉环境感知研究[D]. 长春: 吉林大学, 2023.

[52] 孙畅. 基于深度学习的高级辅助驾驶视觉感知关键技术研究[D]. 北京: 北京科技大学, 2022.

[53] Li N, Lu C, Yu X, et al. Real-time 3D-lidar, MMW radar and GPS/IMU fusion based vehicle detection and tracking in unstructured environment[C]. 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021: 13339-13345.

[54] Xiang C, Feng C, Xie X, et al. Multi-sensor fusion and cooperative perception for autonomous driving: a review[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(5): 36-58.

[55] Yeong D J, Velasco-Hernandez G, Barry J, et al. Sensor and sensor fusion technology in autonomous vehicles: a review[J]. Sensors, 2021, 21(6): 2140.

[56] Shahian Jahromi B, Tulabandhula T, Cetin S. Real-time hybrid multi-sensor fusion framework for perception in autonomous vehicles[J]. Sensors, 2019, 19(20): 4357.

[57] 王科未. 基于多传感融合的智能汽车驾驶场景理解与建模研究[D]. 武汉: 武汉理工大学, 2022.

[58] 赵兰. 自动驾驶车辆环境认知与交互式决策研究[D]. 长春: 吉林大学, 2024.

[59] 李彦锋. 面向自动驾驶虚拟测试的场景车辆行为与运动规划方法研究[D]. 长春: 吉林大学, 2024.

[60] 刘延东. 基于自主学习的自动驾驶决策与控制研究[D]. 北京: 中国科学院大学(中国科学院深圳先进技术研究院), 2022.

[61] 赵俊武. 考虑交通参与者驾驶特性的智能车辆交互式决策规划研究[D]. 长春: 吉林大学, 2024.

[62] Sun Y, Yuan Q, Gao Q, et al. A multiple environment available path planning based on an improved a* algorithm[J]. International Journal of Computational Intelligence Systems, 2024, 17(1): 172.

[63] Chen R, Hu J, Xu W. An RRT-dijkstra-based path planning strategy for autonomous vehicles[J]. Applied Sciences, 2022, 12(23): 11982.

[64] Sun L, Duan X, Zhang K, et al. Improved path planning algorithm for mobile robots[J]. Soft Computing, 2023, 27(20): 15057-15073.

[65] Arango J F, Bergasa L M, Revenga P A, et al. Drive-by-wire development process based on ros for an autonomous electric vehicle[J]. Sensors, 2020, 20(21): 6121.

[66] Farag W. Complex trajectory tracking using PID control for autonomous driving[J]. International Journal of Intelligent Transportation Systems Research, 2020, 18(2): 356-366.

[67] Tang M, Chen X, Tang K, et al. Longitudinal and lateral cooperative control of preview intelligent vehicles with stabilization[J]. Journal of Intelligent and Robotic Systems, 2024, 110(4): 156.

[68] Okasha M, Kralev J, Islam M. Design and experimental comparison of PID, LQR and MPC stabilizing controllers for parrot mambo mini-drone[J]. Aerospace, 2022, 9(6): 298.

[69] Petrov T, Sevcik L, Pocta P, et al. A performance benchmark for dedicated short-range communications and LTE-based cellular-V2X in the context of vehicle-to-infrastructure communication and urban scenarios[J]. Sensors, 2021, 21(15): 5095.

[70] Khan M J, Khan M A, Malik S, et al. Advancing C-V2X for level 5 autonomous driving from the perspective of 3GPP standards[J]. Sensors, 2023, 23(4): 2261.

[71] Alalewi A, Dayoub I, Cherkaoui S. On 5G-V2X use cases and enabling technologies: a comprehensive survey[J]. IEEE Access, 2021, 9: 107710-107737.

[72] Noor-A-Rahim Md, Liu Z, Lee H, et al. 6G for vehicle-to-everything (V2X) communications: enabling technologies, challenges, and opportunities[J]. Proceedings of the IEEE, 2022, 110(6): 712-734.

[73] Yang B, Cao X, Xiong K, et al. Edge intelligence for autonomous driving in 6G wireless system: design challenges and solutions[J]. IEEE Wireless Communications, 2021, 28(2): 40-47.

[74] Xiao Z, Shu J, Jiang H, et al. Toward collaborative occlusion-free perception in connected autonomous vehicles[J]. IEEE Transactions on Mobile Computing, 2023.

[75] Huang Z, Liu W, Shen S, et al. A universal cooperative decision-making framework for connected autonomous vehicles with generic road topologies[J]. IEEE Transactions on Vehicular Technology, 2024.

[76] Panigrahi S, Raju U S N. Pedestrian detection based on hand-crafted features and multi-layer feature fused-ResNet model[J]. International Journal on Artificial Intelligence Tools, 2021, 30(5): 2150028.

[77] Zou Z, Chen K, Shi Z, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276.

[78] Bansal M, Kumar M, Kumar M. 2D object recognition: a comparative analysis of SIFT, SURF and ORB feature descriptors[J]. Multimedia Tools and Applications, 2021, 80(12): 18839-18857.

[79] Sai P E, David D. An effective framework to recognise multiple objects using single shot detection algorithm over histogram of oriented gradients[C]. AIP Conference Proceedings: Vol. 3193, 2024.

[80] Wen F, Wang M, Hu X. DFAM-DETR: deformable feature based attention mechanism DETR on slender object detection[J]. IEICE Transactions on Information and Systems, 2023, E106-D(3): 401-409.

[81] Wang A, Chen H, Liu L, et al. YOLOv10: real-time end-to-end object detection[A]. arXiv, 2024.

[82] Hussain M. Yolov1 to v8: unveiling each variant–a comprehensive review of yolo[J]. IEEE Access, 2024, 12: 42816-42833.

[83] Wang C Y, Yeh I H, Mark Liao H Y. YOLOv9: learning what you want to learn using programmable gradient information[C]. Computer Vision – ECCV 2024, 2025: 1-21.

[84] Chen Z, Guo H, Yang J, et al. Fast vehicle detection algorithm in traffic scene based on improved SSD[J]. Measurement, 2022, 201: 111655.

[85] Seo G, Yoo J, Cho J, et al. Kl-divergence-based region proposal network for object detection[C]. 2020 IEEE International Conference on Image Processing (ICIP), 2020: 2001-2005.

[86] Xie X, Cheng G, Wang J, et al. Oriented R-CNN for object detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3520-3529.

[87] Ruan J, Cui H, Huang Y, et al. A review of occluded objects detection in real complex scenarios for autonomous driving[J]. Green Energy and Intelligent Transportation, 2023, 2(3): 100092.

[88] 孙方伟, 李承阳, 谢永强, 等. 深度学习应用于遮挡目标检测算法综述[J]. 计算机科学与探索, 2022, 16(6): 1243-1259.

[89] DeVries T, Taylor G W. Improved regularization of convolutional neural networks with cutout[A]. arXiv, 2017.

[90] Yun S, Han D, Oh S J, et al. Cutmix: regularization strategy to train strong classifiers with localizable features[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6023-6032.

[91] Wang H, Xu Y, Wang Z, et al. Centernet-auto: a multi-object visual detection algorithm for autonomous driving scenes based on improved centernet[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7(3): 742-752.

[92] Zhao H, Peng X, Wang S, et al. Improved object detection method for unmanned driving based on transformers[J]. Frontiers in Neurorobotics, 2024, 18: 1342126.

[93] Aron C, Florin M. Current approaches in traffic lane detection: a minireview[J]. Archiwum Motoryzacji, 2024, 104(2).

[94] Zakaria N J, Shapiai M I, Ghani R A, et al. Lane detection in autonomous vehicles: a systematic review[J]. IEEE Access, 2023, 11: 3729-3765.

[95] Zheng F, Luo S, Song K, et al. Improved lane line detection algorithm based on hough transform[J]. Pattern Recognition and Image Analysis, 2018, 28(2): 254-260.

[96] Bi W, Cheng D, Liu W, et al. A robust color edge detection algorithm based on the quaternion hardy filter[J]. Acta Mathematica Scientia, 2022, 42(3): 1238-1260.

[97] Tang J, Li S, Liu P. A review of lane detection methods based on deep learning[J]. Pattern Recognition, 2021, 111: 107623.

[98] Shi J, Zhao L. A review of lane detection based on semantic segmentation[J]. International Journal of Advanced Network, Monitoring and Controls, 2021, 6(3): 1-8.

[99] Cheng W, Wang X, Mao B. Research on lane line detection algorithm based on instance segmentation[J]. Sensors, 2023, 23(2): 789.

[100] Lee S H, Lee S H. U-net-based learning using enhanced lane detection with directional lane attention maps for various driving environments[J]. Mathematics, 2024, 12(8): 1206.

[101] Li J, Jiang F, Yang J, et al. Lane-DeepLab: lane semantic segmentation in automatic driving scenarios for high-definition maps[J]. Neurocomputing, 2021, 465: 15-25.

[102] Gad G M, Annaby A M, Negied N K, et al. Real-time lane instance segmentation using SegNet and image processing[C]. 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), 2020: 253-258.

[103] Wang Z, Ren W, Qiu Q. LaneNet: real-time lane detection networks for autonomous driving[A]. arXiv, 2018.

[104] Pan X, Shi J, Luo P, et al. Spatial as deep: spatial cnn for traffic scene understanding[C]. Proceedings of the AAAI Conference on Artificial Intelligence: Vol. 32, 2018.

[105] Tabelini L, Berriel R, Paixao T M, et al. Polylanenet: lane estimation via deep polynomial regression[C]. 2020 25th International Conference on Pattern Recognition (ICPR), 2021: 6150-6156.

[106] Zhang Y, Lu Z, Ma D, et al. Ripple-GAN: lane line detection with ripple lane line detection network and wasserstein GAN[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(3): 1532-1542.

[107] Khan H U, Ali A R, Hassan A, et al. Lane detection using lane boundary marker network with road geometry constraints[C]. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020: 1834-1843.

[108] Chougule S, Koznek N, Ismail A, et al. Reliable multilane detection and classification by utilizing cnn as a regression network[C]. Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018: 0-0.

[109] Hoel C J, Wolff K, Laine L. Tactical decision-making in autonomous driving by reinforcement learning with uncertainty estimation[C]. 2020 IEEE Intelligent Vehicles Symposium (IV), 2020: 1563-1569.

[110] Kiran B R, Sobh I, Talpaert V, et al. Deep reinforcement learning for autonomous driving: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(6): 4909-4926.

[111] Garrido F, Resende P. Review of decision-making and planning approaches in automated driving[J]. IEEE Access, 2022, 10: 100348-100366.

[112] Hu Y, Yan L, Zhan J, et al. Decision-making system based on finite state machine for low-speed autonomous vehicles in the park[C]. 2022 IEEE International Conference on Real-time Computing and Robotics (RCAR), 2022: 721-726.

[113] Abou Elassad Z E, Mousannif H, Al Moatassime H, et al. The application of machine learning techniques for driving behavior analysis: a conceptual framework and a systematic literature review[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103312.

[114] Li L, Ota K, Dong M. Humanlike driving: empirical decision-making system for autonomous vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 6814-6823.

[115] Irshayyid A, Chen J, Xiong G. A review on reinforcement learning-based highway autonomous vehicle control[J]. Green Energy and Intelligent Transportation, 2024: 100156.

[116] Zhu Z, Zhao H. A survey of deep RL and IL for autonomous driving policy learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(9): 14043-14065.

[117] Lauri M, Hsu D, Pajarinen J. Partially observable markov decision processes in robotics: a survey[J]. IEEE Transactions on Robotics, 2022, 39(1): 21-40.

[118] Ye F, Cheng X, Wang P, et al. Automated lane change strategy using proximal policy optimization-based deep reinforcement learning[C]. 2020 IEEE Intelligent Vehicles Symposium (IV), 2020: 1746-1752.

[119] Wang J, Hu C, Zhao J, et al. Deep Q-network-based efficient driving strategy for mixed traffic flow with connected and autonomous vehicles on urban expressways[J]. Transportation Research Record: Journal of the Transportation Research Board, 2023, 2677(10): 324-338.

[120] Wang J, Zhang Q, Zhao D, et al. Lane change decision-making through deep reinforcement learning with rule-based constraints[C]. 2019 International Joint Conference on Neural Networks (IJCNN), 2019: 1-6.

[121] Bouton M, Nakhaei A, Isele D, et al. Reinforcement learning with iterative reasoning for merging in dense traffic[C]. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020: 1-6.

[122] Chen D, Jiang L, Wang Y, et al. Autonomous driving using safe reinforcement learning by incorporating a regret-based human lane-changing decision model[C]. 2020 American Control Conference (ACC), 2020: 4355-4361.

[123] Deng H, Zhao Y, Wang Q, et al. Deep reinforcement learning based decision-making strategy of autonomous vehicle in highway uncertain driving environments[J]. Automotive Innovation, 2023, 6(3): 438-452.

[124] Jiang F, Cheng H, Chen G. Collective decision-making for dynamic environments with visual occlusions[J]. Swarm Intelligence, 2022, 16(1): 7-27.

[125] Bouton M, Nakhaei A, Fujimura K, et al. Scalable decision making with sensor occlusions for autonomous driving[C]. 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018: 2076-2081.

[126] 郑义. 车联网环境下无信号交叉口车辆协同控制算法研究[D]. 长春: 吉林大学, 2020.

[127] 王润民. 交叉口环境下网联汽车群体协同控制策略研究[D]. 西安: 长安大学, 2024.

[128] Li S, Shu K, Chen C, et al. Planning and decision-making for connected autonomous vehicles at road intersections: a review[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 133.

[129] 姜忠太. 智能网联环境下城市交叉口交通流协同控制方法研究[D]. 长春: 吉林大学, 2024.

[130] Gholamhosseinian A, Seitz J. A comprehensive survey on cooperative intersection management for heterogeneous connected vehicles[J]. IEEE Access, 2022, 10: 7937-7972.

[131] Zhong Z, Nejad M, Lee E E. Autonomous and semiautonomous intersection management: a survey[J]. IEEE Intelligent Transportation Systems Magazine, 2021, 13(2): 53-70.

[132] Dresner K, Stone P. A multiagent approach to autonomous intersection management[J]. Journal of Artificial Intelligence Research, 2008, 31: 591-656.

[133] Yang Q, Zhang J. Modelling the queues of connected and autonomous vehicles at signal-free intersections considering the correlated vehicle arrivals[J]. Journal of Computational Science, 2024, 82: 102420.

[134] Bichiou Y, Rakha H A. Developing an optimal intersection control system for automated connected vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5): 1908-1916.

[135] Chen B, Pan X, Evangelou S A, et al. Optimal control for connected and autonomous vehicles at signal-free intersections[J]. IFAC-PapersOnLine, 2020, 53(2): 15306-15311.

[136] Pan X, Chen B, Dai L, et al. A hierarchical robust control strategy for decentralized signal-free intersection management[J]. IEEE Transactions on Control Systems Technology, 2023.

[137] Quang Tran D, Bae S H. Proximal policy optimization through a deep reinforcement learning framework for multiple autonomous vehicles at a non-signalized intersection[J]. Applied Sciences, 2020, 10(16): 5722.

[138] Shi Y, Liu Y, Qi Y, et al. A control method with reinforcement learning for urban un-signalized intersection in hybrid traffic environment[J]. Sensors, 2022, 22(3): 779.

[139] Wei H, Zheng G, Gayah V, et al. Recent advances in reinforcement learning for traffic signal control: a survey of models and evaluation[J]. ACM SIGKDD Explorations Newsletter, 2021, 22(2): 12-18.

[140] Liu S, Zhang W, Wu X, et al. A simulation system and speed guidance algorithms for intersection traffic control using connected vehicle technology[J]. Tsinghua Science and Technology, 2019, 24(2): 160-170.

[141] Fayazi S A, Vahidi A. Mixed-integer linear programming for optimal scheduling of autonomous vehicle intersection crossing[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(3): 287-299.

[142] Shen X, Zhang X, Ouyang T, et al. Cooperative comfortable-driving at signalized intersections for connected and automated vehicles[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6247-6254.

[143] Noaeen M, Naik A, Goodman L, et al. Reinforcement learning in urban network traffic signal control: a systematic literature review[J]. Expert Systems with Applications, 2022, 199: 116830.

[144] Liu X, Hsieh P C, Kumar P R. Safe intersection management for mixed transportation systems with human-driven and autonomous vehicles[C]. 2018 56th Annual Allerton Conference on Communication, Control, and Computing (allerton), 2018: 834-841.

[145] Al-Turki M, Ratrout N T, Rahman S M, et al. Signalized intersection control in mixed autonomous and regular vehicles traffic environment—a critical review focusing on future control[J]. IEEE Access, 2022, 10: 16942-16951.

[146] Ma W, Li J, Yu C. Shared-phase-dedicated-lane based intersection control with mixed traffic of human-driven vehicles and connected and automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2022, 135: 103509.

[147] Aoki S, Rajkumar R. V2V-based synchronous intersection protocols for mixed traffic of human-driven and self-driving vehicles[C]. 2019 IEEE 25th International Conference on Embedded and Real-time Computing Systems and Applications (RTCSA), 2019: 1-11.

[148] Niels T, Mitrovic N, Bogenberger K, et al. Smart intersection management for connected and automated vehicles and pedestrians[C]. 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2019: 1-10.

[149] Niels T, Mitrovic N, Dobrota N, et al. Simulation-based evaluation of a new integrated intersection control scheme for connected automated vehicles and pedestrians[J]. Transportation Research Record: Journal of the Transportation Research Board, 2020, 2674(11): 779-793.

[150] Niels T, Bogenberger K, Mitrovic N, et al. Integrated intersection management for connected, automated vehicles, and bicyclists[C]. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020: 1-8.

[151] Niels T, Bogenberger K, Papageorgiou M, et al. Optimization-based intersection control for connected automated vehicles and pedestrians[J]. Transportation Research Record: Journal of the Transportation Research Board, 2023: 36119812311729.

[152] Tang Z, Von Gioi R G, Monasse P, et al. A precision analysis of camera distortion models[J]. IEEE Transactions on Image Processing, 2017, 26(6): 2694-2704.

[153] Zhou X, Wang D, Krähenbühl P. Objects as points[A]. arXiv, 2019.

[154] Li X, Lv C, Wang W, et al. Generalized focal loss: towards efficient representation learning for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(3): 3139-3153.

[155] Zhou X, Koltun V, Krähenbühl P. Simple multi-dataset detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 7571-7580.

[156] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 7464-7475.

[157] Farhadi A, Redmon J. Yolov3: an incremental improvement[C]. Computer Vision and Pattern Recognition: Vol. 1804, 2018: 1-6.

[158] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: optimal speed and accuracy of object detection[A]. arXiv, 2020.

[159] Zhang Y, Guo Z, Wu J, et al. Real-time vehicle detection based on improved yolo v5[J]. Sustainability, 2022, 14(19): 12274.

[160] Tan M, Pang R, Le Q V. Efficientdet: scalable and efficient object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.

[161] Zhou X, Zhuo J, Krahenbuhl P. Bottom-up object detection by grouping extreme and center points[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 850-859.

[162] Law H, Deng J. Cornernet: detecting objects as paired keypoints[C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 734-750.

[163] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]. Advances in Neural Information Processing Systems: Vol. 30, 2017.

[164] Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (long and Short Papers), 2019: 4171-4186.

[165] OpenAI, Achiam J, Adler S, et al. GPT-4 technical report[A]. arXiv, 2024.

[166] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: transformers for image recognition at scale[C]. International Conference on Learning Representations, 2020.

[167] Yang G, Xue Y, Meng L, et al. Survey on autonomous vehicle simulation platforms[C]. 2021 8th International Conference on Dependable Systems and Their Applications (DSA), 2021: 692-699.

[168] Swift I P, Chattopadhyay D. A value-oriented investigation of photoshop’s generative fill[A]. arXiv, 2024.

[169] Li C, Li L, Jiang H, et al. YOLOv6: a single-stage object detection framework for industrial applications[A]. arXiv, 2022.

[170] Akiba T, Sano S, Yanase T, et al. Optuna: a next-generation hyperparameter optimization framework[C]. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 2623-2631.

[171] Zhao H, Gallo O, Frosio I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2016, 3(1): 47-57.

[172] Hou Y, Ma Z, Liu C, et al. Learning lightweight lane detection cnns by self attention distillation[C]. Proceedings of the Ieee/cvf International Conference on Computer Vision, 2019: 1013-1021.

[173] Chen Z, Liu Q, Lian C. Pointlanenet: efficient end-to-end cnns for accurate real-time lane detection[C]. 2019 IEEE Intelligent Vehicles Symposium (IV), 2019: 2563-2568.

[174] Tabelini L, Berriel R, Paixao T M, et al. Keep your eyes on the lane: real-time attention-guided lane detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 294-302.

[175] Bellotti F, Lazzaroni L, Capello A, et al. Explaining a deep reinforcement learning (DRL)-based automated driving agent in highway simulations[J]. IEEE Access, 2023, 11: 28522-28550.

[176] Treiber M, Hennecke A, Helbing D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62(2): 1805-1824.

[177] Kesting A, Treiber M, Helbing D. General lane-changing model MOBIL for car-following models[J]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 1999(1): 86-94.

[178] Hessel M, Modayil J, van Hasselt H, et al. Rainbow: combining improvements in deep reinforcement learning[A]. arXiv, 2017.

[179] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.

[180] Dahl J, de Campos G R, Olsson C, et al. Collision avoidance: a literature review on threat-assessment techniques[J]. IEEE Transactions on Intelligent Vehicles, 2018, 4(1): 101-113.

[181] Xu C, Zhao W, Wang C. An integrated threat assessment algorithm for decision-making of autonomous driving vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(6): 2510-2521.

[182] 黄保霖. 考虑路面附着条件的智能汽车高速紧急换道避障决策和控制[D]. 重庆: 重庆大学, 2022.

[183] Lyu W, Zhou Z, Chen L, et al. A survey on image and video stitching[J]. Virtual Reality & Intelligent Hardware, 2019, 1(1): 55-83.

[184] Wali B, Khattak A, Karnowski T. The relationship between driving volatility in time to collision and crash injury severity in a naturalistic driving environment[J]. Analytic Methods in Accident Research, 2020, 28: 100136.

[185] Chand A, Jayesh S, Bhasi A B. Road traffic accidents: an overview of data sources, analysis techniques and contributing factors[J]. Materials Today Proceedings, 2021, 47: 5135-5141.

[186] Gupta A, Johnson J, Fei-Fei L, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[A]. arXiv, 2018.

[187] Han B, Ren Z, Wu Z, et al. Off-policy reinforcement learning with delayed rewards[C]. Proceedings of the 39th International Conference on Machine Learning, 2022: 8280-8303.

[188] Li D, Zhu F, Wu J, et al. Managing mixed traffic at signalized intersections: an adaptive signal control and CAV coordination system based on deep reinforcement learning[J]. Expert Systems with Applications, 2024, 238: 121959.

[189] Stone G S and P. A protocol for mixed autonomous and human-operated vehicles at intersections[J]. 2017.

[190] Li D, Wu J, Xu M, et al. Adaptive traffic signal control model on intersections based on deep reinforcement learning[J]. Journal of Advanced Transportation, 2020, 2020(1): 6505893.

中图分类号:

 U471.15    

馆藏号:

 2025-002-0350    

开放日期:

 2025-12-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式