题名: | 基于表示学习的跨域人脸深度伪造检测方法研究 |
作者: | |
学号: | SX2216010 |
保密级别: | 公开 |
语种: | chi |
学科代码: | 081200 |
学科: | 工学 - 计算机科学与技术(可授工学、理学学位) - 计算机科学与技术 |
学生类型: | 硕士 |
学位: | 工学硕士 |
入学年份: | 2025 |
学校: | 南京航空航天大学 |
院系: | |
专业: | |
研究方向: | 计算机视觉 |
导师姓名: | |
导师单位: | |
完成日期: | 2025-03-17 |
答辩日期: | 2025-03-17 |
外文题名: |
Research on Cross-Domain Face Forgery Detection Method Based on Representation Learning |
关键词: | Deepfake 检测 ; 人脸伪造检测 ; 计算机视觉 ; 机器学习 ; 领域泛化 |
外文关键词: | Deepfake Detection ; Face Forgery Detection ; Computer Vision ; Machine Learning ; Domain Generalization |
摘要: |
人脸伪造检测是计算机视觉领域的一项重要任务,该任务旨在辨别图像或视频中人脸是否经过伪造技术篡改,在保护隐私和加强信息安全方面发挥着关键作用。随着深度学习技术的发展和普及,生成的伪造图像与视频愈发逼真,给人脸伪造检测领域带来了严峻的挑战。然而,人脸伪造检测方法在面对训练中未见的复杂和未知的人脸伪造方法时或受到攻击时往往失效。综上,为了克服这些挑战,本研究致力于提升跨域人脸伪造检测的泛化性,并提出了三个算法,旨在增强人脸深度伪造检测模型在跨域场景中的泛化能力和鲁棒性。 1. 基于多级分布辨别增强的跨域人脸伪造检测算法 从人脸伪造检测网络的分布特性的角度,研究真实和伪造图像的在表示空间的特征差异,本文提出了一种基于多级分布差异增强(MDDE) 的算法。MDDE 通过辨别真实人脸和伪造人脸在多个潜在表示层次上的分布模式变化,并结合可变形卷积模块从真实人脸图像中提取细粒度特征,提高了其在不同数据集中的检测精度性能。在多个基准数据集上的大量实验验证多级分布差异增强验证了本文方法的有效性及其与几种最先进的技术相比的卓越性能。 2. 基于对比脱敏学习的跨域人脸伪造检测算法 从检测器的泛化性出发,研究现有的人脸伪造检测方法通常具有较高的误报率,从而破坏系统的可用性的问题。本文提出了一种基于鲁棒脱敏算法的对比脱敏网络(CDN),该网络通过从对真实人脸图像的域转换中学习来捕获基本域特征,使得模型对不同的、可能看不见的伪造方法不敏感。对比脱敏学习在理论上证明了学习到的人脸表示上是合理的,因为它对域变化具有鲁棒性。在大规模基准数据集上进行的大量实验表明,本文方法比最先进的方法获得了更低的误报率和更高的检测精度。 3. 基于鲁棒域梯度对齐的跨域人脸伪造检测算法 深度伪造检测中的跨域泛化问题是一个挑战,以往基于样本增强的方法依赖较强的假设,但在人脸伪造检测中往往难以满足。本文提出了一种新颖的学习目标,称为鲁棒域梯度对齐(RoGA),将泛化梯度更新引入ERM 梯度更新中,并通过对模型参数施加扰动实现域间上升点对齐,从而增强模型对域偏移的鲁棒性。该方法在保留域不变特征的同时有效处理域特定特性。实验结果表明,所提鲁棒梯度对齐策略优于当前最先进的域泛化技术,验证了其有效性。 综上所述,本文从表示学习的角度研究深度伪造人脸的泛化性问题,并提出了多种方法来提升模型的检测精度和泛化性,在科学研究和实际应用上具备一定的意义。 |
外摘要要: |
Face forgery detection is an important task in the field of computer vision, aiming to identify whether faces in images or videos have been manipulated using forgery techniques. It plays a pivotal role in safeguarding privacy and strengthening information security. However, with the rapid advancement and widespread application of deep learning, forged images and videos are becoming increasingly realistic, posing significant challenges to the field of face forgery detection. Existing methods often fail when encountering complex and unseen forgery techniques or under adversarial attacks. To address these challenges, this work focuses on enhancing generalization and robustness in cross-domain face forgery detection and introduces three key contributions: To overcome these challenges, this work introduces three key contributions to enhance the generalization ability and robustness of face forgery detection method in cross-domain scenarios. 1. Multi-level Distributional Discrepancy Enhancement for Cross Domain Face Forgery Detection. This work investigates the representational differences between real and forged images. A novel approach, Multi-level Distributional Discrepancy Enhancement (MDDE), is proposed to capture distributional variations across multiple levels of latent representations. By integrating a deformable convolution module, MDDE extracts fine-grained features from real images, thereby improving adaptability and performance across diverse datasets. Extensive experiments on benchmark validate the effectiveness of MDDE, demonstrating superior performance compared to state-of-the-art methods. 2. Contrastive Desensitization Learning for Cross Domain Face Forgery Detection. Starting from the generalization of the detector, this work studies the problem that existing face forgery detection methods usually have a high false alarm rate, which undermines the usability of the system. This thesis proposes a contrastive desensitization network (CDN) based on a robust desensitization algorithm, which captures intrinsic features by desensitization learning from domain transformation of real face images, making the model insensitive to different and unseen forgery techniques. Contrastive desensitization learning theoretically proves that the learned face representation is reasonable because it is robust under domain shift. Extensive experiments on large-scale benchmark datasets show that our method achieves lower false alarm rates and higher detection accuracy than the state-of-the-art methods. 3. A Generalizable Deepfake Detection Method through Robust Gradient Alignment. Cross-domain generalization in face forgery detection is a persistent challenge. Previous augmentation-based methods rely on strong domain assumptions, which are often impractical for face forgery detection. This work proposes a novel learning objective, Robust Gradient Alignment (RoGA), which aligns generalization gradient updates with ERM gradient updates. By applying perturbations to model parameters, RoGA achieves alignment of ascent points across domains, enhancing robustness to domain shifts. This method effectively retains domain-invariant features while managing domain-specific characteristics. Experimental results show that RoGA outperforms state-of-the-art domain generalization techniques, validating its effectiveness. In summary, this thesis addresses the generalization challenges in face forgery detection from a representation learning perspective. By introducing innovative methods, it significantly improves detection accuracy and generalization performance, achieving impactful results in both scientific research and practical applications. |
参考文献: |
[44] torzdf. Deepfakes. https://github.com/deepfakes/faceswap, 2018. Accessed:. [46] MarekKowalski. FaceSwap. https://github.com/MarekKowalski/FaceSwap, 2018. Accessed:. [55] Kingma D P, Welling M. Auto-Encoding Variational Bayes[J]. arXiv.org, 2014.. [95] Pollard D. Convergence of stochastic processes[M]. Springer Science & Business Media, 2012. |
中图分类号: | TP391 |
馆藏号: | 2025-016-0192 |
开放日期: | 2025-09-29 |