- 无标题文档

中文题名:

 黑蚱蝉翅翼的结构、耦合特性及其仿生两栖机器人研究    

姓名:

 李倩    

学号:

 BX1805512    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080203    

学科名称:

 工学 - 机械工程 - 机械设计及理论    

学生类型:

 博士    

学位:

 工学博士    

入学年份:

 2018    

学校:

 南京航空航天大学    

院系:

 机电学院    

专业:

 机械工程    

研究方向:

 仿生机器人及微型飞行器设计    

第一导师姓名:

 吉爱红    

第一导师单位:

 机电学院    

完成日期:

 2023-06-09    

答辩日期:

 2023-06-02    

外文题名:

 

Research on Structure, Coupling Properties of Wings in Cryptympana atrata and Bionic Amphibious Robot Design

    

中文关键词:

 翅翼耦合特性 ; 仿生两栖机器人 ; 扑翼旋翼混合动力 ; 飞爬转换控制 ; 仿生设计     

外文关键词:

 Wing coupling properties ; Bionic amphibious robot ; Flapping-rotor wing hybrid power ; Flying-climbing transition control ; Biomimetic design     

中文摘要:

昆虫飞行时的高机动性、高灵活性在大自然中展现着独特的魅力,它利用翅膀的扑动及扭转来改变速度和迎角,产生升力及驱动力矩,从而达到独特的飞行技能。昆虫拥有多样化的翅翼结构和扑翼时的动态特性,其翅翼形态结构与扑动方式启发着我们开展机翼的仿生设计及扑动机构的优化设计。昆虫的扑翼飞行、壁面爬行以及两种运动模式间自如转换的运动能力,给我们提供了极好的仿生模型,而现有的仿生机器人很少能同时兼具这两种运动能力。

本文从黑蚱蝉(Cryptotympana atrata)翅翼的形态结构、力学性能、耦合特性研究入手,观测黑蚱蝉翅翼的几何形态学数据和微观结构,测量翅翼翼膜及翼脉的材料力学特性;建立翅翼的运动学模型,分析前翼扑动的运动学特征参数;建立昆虫前后翼耦合连接理论模型,分析前后翼夹角变化对扑翼飞行的气动影响;设计并优化仿昆扑翼系统的扑动机构与机翼,分析扑动过程中机翼的变形与气动力的变化,揭示机翼前缘杆柔性对升力的气动影响;进一步设计仿生空壁两栖机器人,建立扑翼旋翼混合动力系统,优化总体布局与控制方案,分析机器人飞行及爬行的运动学与动力学,实现机器人在空中高效可控的飞行,并着落至竖直壁面进行稳定爬行;定量分析仿生两栖机器人的扑旋混合动力飞行、气动负压增强的仿生黏附爬行及飞爬转换性能,验证机器人总体布局设计与飞爬转换控制分配策略的有效性。论文主要研究成果如下:

(1)黑蚱蝉翅翼翼膜和翼脉的形态结构与力学性能的研究。利用扫描电子显微镜对黑蚱蝉翅翼翼膜和翼脉的微观结构进行几何形态表征,并获得翼膜和翼脉的化学组成成分。研究发现黑蚱蝉的前翼由非均匀材料组成,翼膜和翼脉的厚度从翼基到翼尖呈梯度性降低,外壁为多层纤维的层状结构,提高前翼承受气动载荷的能力。构成翅翼的化学成分元素保证了扑动时翅翼材料足够的强度与柔性。对前翼各部分的翼膜及翼脉进行拉伸测试,分析翼膜及翼脉的结构与力学分布特征对飞行气动力及姿态控制的作用。结果表明翼膜的高弹性模量保证了黑蚱蝉飞行过程中的升力产生及姿态控制。靠近翼根的翼膜较厚,并由弹性模量较高的主翼脉作为框架来加强,使靠近翼根区域的部分不易变形;远离翼根区域的翼膜比较薄,附近的翼脉弹性模量较小,柔性较好。对比翼膜及翼脉与工业材料的弹性模量范围,为大负载大体型仿生扑翼飞行系统的人工机翼的设计提供重要依据。

(2)黑蚱蝉前后翼耦合微观结构及动态特性的测量与分析。采用扫描电子显微镜对黑蚱蝉前后翼的耦合微观结构进行观测,建立耦合连接理论模型,分析卷边-沟槽耦合结构的运动特征。通过高速摄像运动捕捉系统与六维力测量系统观测黑蚱蝉翅翼的扑动动态特性,分析其在内外旋与上下扑过程中轨迹线的变化。研究发现黑蚱蝉翅膀的扑动轨迹呈细长的“0”字形,翅膀前缘在扑动过程中表现出明显的柔性。建立黑蚱蝉扑翼飞行的运动学模型,分析得到前翼扑动的运动学特性。基于前后翼耦合结构模型,分析扑动过程中前后翼夹角变化对黑蚱蝉扑翼飞行的气动影响。研究结果表明黑蚱蝉翅翼耦合时的铰链结构使得前后翼之间更容易相对转动,翅翼产生柔性弯曲变形,产生有利的攻角和翼型,从而在平移阶段产生稳定的升力。

(3)设计并优化仿昆扑翼系统。根据黑蚱蝉翅翼的结构特点与扑动特性设计扑翼系统。通过建立目标函数优化扑动机构的结构参数,使扑动幅度从71.4°提高至90°;通过改变机翼的翼脉布局、展弦比、锥度比、机翼表面积和前缘杆柔性,对机翼参数进行实验优化。在恒定输入功率P = 2.0 W下,优化后的扑翼系统最高平均升力可达17 g,显示出足够的负载能力。针对扑动过程中机翼的变形与气动力的变化,分析机翼参数导致扑翼系统升力变化的气动原因。研究结果表明扑翼系统机翼的展弦比和前缘杆柔性对升力有显著影响,且前缘杆柔性的增加会导致扑动过程中机翼后缘的分离被延迟,增强拍-合效应,这对扑翼系统的气动性能具有重要意义。

(4)设计兼具空中飞行与壁面爬行能力的仿生两栖机器人。设计机器人的机身结构与姿态控制方式,在扑翼系统的基础上建立扑翼旋翼混合动力系统,优化总体布局与系统控制方案,构建机器人飞行及爬行的运动学与动力学模型。分析扑翼旋翼混合动力布局的气动性能,发现混合动力控制的三轴力矩输入输出互相独立,且旋翼提高了动力系统的极限推力,扑翼提高了动力系统的极限效率,使得扑旋混合动力飞行系统兼具较高的推力与效率。根据昆虫在不同表面的附着与爬行特性设计爬行机构与仿生黏附垫,结合气动负压吸附与具有仿生黏附特性的爬行动力系统,实现机器人在竖直壁面的稳定爬行,爬行速度达6 cm/s。通过纵轴旋翼动力的布局设计和控制分配策略,机器人可以在0.4 s内从空中过渡到壁面(着落),并在0.7 s内从壁面过渡到空中(起飞),实现机器人在飞行与爬行模式之间的任意平滑转换。最终完成机器人在多种类型壁面的着落、爬行与起飞。

外文摘要:

The high maneuverability and agility of insects in flight show a unique charm in nature. They use the flapping and twisting of the wings to change the speed and angle of attack, leading to the generation of lift and driving moment, so as to achieve unique flight skills. The wings of insects have diversified structure and dynamic properties, and their wing morphological structure and flapping mode also inspire us to optimize the flapping mechanism and wing design of the flapping wing system. Insects that can perform flapping-wing flight, climb on a wall, and switch smoothly between the two locomotion modes provide us with excellent biomimetic models. However, very few biomimetic robots can perform complex locomotion tasks that combine the two abilities of climbing and flying.

In this paper, the research on the morphological structure, mechanical properties, and coupling characteristics of wings in the black cicada (Cryptotympana atrata) is carried out. The geometric morphological data and microscopic structures of wings are observed, and the material mechanical properties of the wing membranes and veins are measured. The kinematic model of the wing is established to analyze the kinematic characteristic parameters of the flapping forewing, and the coupling theoretical model of the forewing and hindwing of C. atrata is constracted to analyze the aerodynamic effects of the change of the angle between the forewing and hindwing on the flapping flight. The flapping mechanism and artificial wing of the biomimetic flapping wing system are designed and optimized to analyze the wing deformation and the aerodynamic change during flapping, so as to reveal the aerodynamic influence of the leading-edge-rod flexibility on the lift. A bionic aerial–wall amphibious robot is further designed, which includes establishing the flapping-rotor wing hybrid power system, optimizing the overall layout and control strategy, and analyzing the kinematics and dynamics of robot flying and climbing. Finally the efficient and controllable flight, and landing to the vertical wall for stable climbing of the robot are realized. The flapping-rotor wing hybrid power flying, bionic adhesion climbing enhanced by aerodynamic negative pressure, and flying-climbing transition performance of the bionic amphibious robot are quantitatively analyzed to verify the effectiveness of the overall layout design and the control allocation strategy of the flying-climbing transition. The main research results are as follows:

(1) Research on the morphological structure and mechanical properties of the wing membranes and veins of C. atrata. A scanning electron microscope is used to represent the geometrical morphology of the microstructure of the wing membranes and veins and obtain their chemical composition. It is indicated that the forewing of C. atrata is composed of heterogeneous materials, and the thickness of the wing veins and membranes reduced gradually from wing base to wing tip, changed in gradient. The wing membrane and the outer wall of the wing vein are the layered structure with multilayer fibers, improving the ability of the forewing to sustain aerodynamic loads. The chemical component elements of the wing ensure the strength and flexibility of the wing when flapping. The tensile tests of the wing membranes and veins of the forewing analyze the structural and mechanical distribution characteristics of the wing membrane and vein on the flying aerodynamics and attitude control. The results demonstate that the high elastic modulus of the membrane ensures the lift generation and attitude control of C. atrata during flight. The wing membrane near the wing root is thicker and reinforced by the main wing vein with a high elastic modulus. This renders the region near the wing root difficult to deform. The membrane far from the wing root is thinner and the elastic modulus of the nearby wing veins is smaller, making them more flexible. The comparison of the elastic modulus range between wing membranes and veins with industrial materials provides important insights for the design of artificial wings for bionic flapping-wing flying system.

(2) Measurement and analysis of the coupling microstructure and dynamic characteristics of the forewing and hindwing. Scanning electron microscope is used to observe the coupled microstructure of the forewing and hindwing of C. atrata. A theoretical model of coupling connection structure is established, and the movement features of the rolled margin-groove coupling structure are analyzed. The dynamic characteristics of the wing flapping of C. atrata are observed by a high-speed camera and a six-dimensional force/torque sensor measurement system to analyze the changes of its trajectory in pronation and supination, upstroke and downstroke. It is found that the flapping trajectory of the wing of C. atrata shows a slender "0" shape, and the leading edge of the wings shows obvious flexibility. The kinematic model of the flapping wing of C. atrata is established, and the kinematic characteristics of the flapping wing are analyzed. Based on the coupling structure model of the forewing and hindwing, the aerodynamic effects of the change of the angle between the forewing and hindwing on the flapping flight of C. atrata are analyzed. The results show that the hinge structure of the wing coupling makes it easier to rotate between the forewing and hindwing, resulting in a certain degree of wing bending, beneficial angle of attack and appropriate wing profile, so as to generate stable lift in the wing translation phase.

(3) Design and optimization of the insect-like flapping wing system. The bionic flapping mechanism and wings are designed according to the flapping and structural characteristics of the wings of C. atrata. The objective function is established to optimize the structure parameters of the flapping mechanism, so that the flapping amplitude is increased from 71.4° to 90°. Wing parameter optimization experiments are conducted by changing the wing-vein layout, aspect ratio, taper ratio, surface area, and leading-edge-rod flexibility. The highest average lift of the optimized flapping wing system reaches 17 g, showing sufficient load capacity under constant input power P = 2.0 W. The aerodynamic reasons of wing parameters leading to lift change of flapping wing system are analyzed for the wing deformation and generated lift during flapping. It is indicated that the aspect ratio of the wing and the flexibility of the leading edge rod have prominent effects on lift. Owing to the increase in the leading-edge rod flexibility, the separation of the wing trailing edge is delayed during clapping, thereby enhancing the clap-and-fling effect, which is of great significance to the aerodynamic performance of the flapping wing system.

(4) Design of a bionic amphibious robot with the ability to fly and climb. The fuselage structure and attitude control mode of an amphibious robot are designed. The flapping-rotor wing hybrid power system is established on the basis of flapping wing system, the overall layout and system control strategy are optimized, and the kinematics and dynamics of robot flying and climbing are analyzed. It is demonstrated that the three-axis torque input and output of the flapping-rotor wing hybrid power control are independent and non-interfering. Moreover, the rotor improves the ultimate thrust of the power system, and the flapping wing improves the ultimate efficiency of the power system, so that the flapping-rotor wing hybrid power flight system is capable of both high thrust and efficiency. The climbing mechanism and biomimetic adhesion pad are designed and prepared according to the adhesion and climbing characteristics of insects on different surfaces, and the robot can stably climb on the vertical wall with a climbing speed of 6 cm/s by combining the aerodynamic negative pressure adsorption with the biomimetic adhesion climbing dynamic system. The longitudinal axis layout design of the rotor dynamics and control allocation strategy enable the robot to cross the air-wall boundary in 0.4 s (landing), and cross the wall-air boundary in 0.7 s (taking off), which realizes a smooth transition between flying and climbing modes. Finally, the robot can land, climb and take off on a variety of wall surfaces.

参考文献:

[1] Mountcastle A M, Ravi S, Combes S A. Nectar vs. pollen loading affects the tradeoff between flight stability and maneuverability in bumblebees[J]. Proceedings of the National Academy of Sciences, 2015,112(33):10527-10532.

[2] Crall J D, Chang J J, Oppenheimer R L, et al. Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence[J]. Interface Focus, 2017,7:20160086.

[3] Ravi S, Kolomenskiy D, Engels T, et al. Bumblebees minimize control challenges by combining active and passive modes in unsteady winds[J]. Scientific Reports, 2016,6:35043.

[4] Karásek M, Muijres F T, De Wagter C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018,361(6407):1089-1094.

[5] Dickinson M. Insect flight[J]. Current Biology, 2006,16(9):R309-R314.

[6] Mountcastle A M, Daniel T L. Aerodynamic and functional consequences of wing compliance[J]. Experiments in Fluids, 2009,46(5):873-882.

[7] Young J, Walker S M, Bomphrey R J, et al. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency[J]. Science, 2009,325(5947):1549-1552.

[8] Mountcastle A M, Combes S A. Wing flexibility enhances load-lifting capacity in bumblebees[J]. Proceedings of the Royal Society B: Biological Sciences, 2013,280(1759):20130531.

[9] Keennon M, Klingebiel K, Won H, et al. Development of the nano hummingbird: a tailless flappingwing micro air vehicle: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition[C], Nashville, Tennessee, 2012.

[10] Phan H V, Aurecianus S, Au T K L, et al. Towards the long-endurance flight of an insect-inspired, tailless, two-winged, flapping-wing flying robot[J]. IEEE Robotics and Automation Letters, 2020,5(4):5059-5066.

[11] Ma K Y, Chirarattananon P, Fuller S B, et al. Controlled flight of a biologically inspired, insect-scale robot[J]. Science, 2013,340:603-607.

[12] Dickinson M H, Lehmann F, Sane S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999,284(5422):1954-1960.

[13] Madangopal R, Khan Z A, Agrawal S K. Energetics-based design of small flapping-wing micro air vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2006,11(4):433-438.

[14] Bradshaw N, Lentink D. Aerodynamic and structural dynamic identification of a flapping wing micro air vehicle: 26th AIAA Applied Aerodynamics Conference[C], Honolulu, Hawaii, 2008.

[15] Wootton R J. Functional morphology of insect wings[J]. Annual Review of Entomology, 1992,37:113-140.

[16] Willmott A P, Ellington C P. The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight[J]. Journal of Experimental Biology, 1997,200(21):2705-2722.

[17] Wootton R J, Evans K E, Herbert R, et al. The hind wing of the desert locust (Schistocerca gregaria Forskal). I. Functional morphology and mode of operation[J]. Journal of Experimental Biology, 2000,203(19):2921-2931.

[18] Rajabi H, Moghadami M, Darvizeh A. Investigation of microstructure, natural frequencies and vibration modes of dragonfly wing[J]. Journal of Bionic Engineering, 2011,8(2):165-173.

[19] Rajabi H, Rezasefat M, Darvizeh A, et al. A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings[J]. Applied Physics A, 2016,122(1).

[20] Rajabi H, Gorb S N. How do dragonfly wings work? A brief guide to functional roles of wing structural components[J]. International Journal of Odonatology, 2020,23(1):23-30.

[21] Weis-Fogh T. Quick estimates of flight fitness in hovering animals: Including novel mechanisms for lift production[J]. Journal of Experimental Biology, 1973,59:169-230.

[22] Ellington C P. The novel aerodynamics of insect flight: Applications to micro-air vehicles[J]. Journal of Experimental Biology, 1999,202(23):3439-3448.

[23] Zhou C, Wu J, Guo S, et al. Experimental study on the lift generated by a flapping rotary wing applied in a micro air vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014,228(11):2083-2093.

[24] Neville A C. Biology of Fibrous Composites[M]. Cambridge: Cambridge University Press, 1993.

[25] Hepburn H R, Ball A. On the structure and mechanical properties of beetle shells[J]. Journal of Materials Science, 1973,8(5):618-623.

[26] Hackman R H, Goldberg M. Comparative study of some expanding arthropod cuticles: The relation between composition, structure and function[J]. Journal of Insect Physiology, 1987,33(1):39-50.

[27] Combes S A, Daniel T L. Flexural stiffness in insect wings I. Scaling and the influence of wing venation[J]. Journal of Experimental Biology, 2003,206(17):2979-2987.

[28] Combes S A, Daniel T L. Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending[J]. Journal of Experimental Biology, 2003,206(17):2989-2997.

[29] Smith C W, Herbert R, Wootton R J, et al. The hind wing of the desert locust (Schistocerca gregaria Forskal). II. Mechanical properties and functioning of the membrane[J]. Journal of Experimental Biology, 2000,203(19):2933-2943.

[30] Herbert R C, Young P G, Smith C W, et al. The hind wing of the desert locust (Schistocerca gregaria Forskal). III. A finite element analysis of a deployable structure[J]. Journal of Experimental Biology, 2000,203(19):2945-2955.

[31] Wootton R J. The mechanical design of insect wings[J]. Scientific American, 1990,263(5):114-120.

[32] Kesel A B, Philippi U, Nachtigall W. Biomechanical aspects of the insect wing: An analysis using the finite element method[J]. Computers in Biology and Medicine, 1998,28:423-437.

[33] Jin T L, Goo N S, Park H C. Finite element modeling of a beetle wing[J]. Journal of Bionic Engineering, 2010,7:145-149.

[34] Rajabi H, Darvizeh A, Shafiei A, et al. Numerical investigation of insect wing fracture behaviour[J]. Journal of Biomechanics, 2015,48(1):89-94.

[35] Rajabi H, Dirks J, Gorb S N. Insect wing damage: Causes, consequences and compensatory mechanisms[J]. Journal of Experimental Biology, 2020,223(9).

[36] Song F, Lee K L, Soh A K, et al. Experimental studies of the material properties of the forewing of cicada (Homóptera, Cicàdidae)[J]. Journal of Experimental Biology, 2004,207(17):3035-3042.

[37] Song F, Xiao K W, Bai K, et al. Microstructure and nanomechanical properties of the wing membrane of dragonfly[J]. Materials Science and Engineering: A, 2007,457(1-2):254-260.

[38] Mamat-Noorhidayah, Yazawa K, Numata K, et al. Morphological and mechanical properties of flexible resilin joints on damselfly wings (Rhinocypha spp.)[J]. PloS One, 2018,13(3):e193147.

[39] Li X, Guo C. Microstructure and material properties of hind wings of a bamboo weevil Cyrtotrachelus buqueti (Coleoptera: Curculionidae)[J]. Microscopy Research and Technique, 2019,82(7):1102-1113.

[40] Xiang J, Du J, Li D, et al. Functional morphology and structural characteristics of wings of the ladybird beetle, Coccinella septempunctata (L.)[J]. Microscopy Research and Technique, 2016,79(6):550-556.

[41] Fonseca P J, Münch D, Hennig R M. How cicadas interpret acoustic signals[J]. Nature, 2000,405:297-298.

[42] Fonseca P J, Revez M A. Song discrimination by male cicadas Cicada barbara lusitanica (Homoptera, Cicadidae)[J]. Journal of Experimental Biology, 2002,205(9):1285-1292.

[43] Liu Z, Yan X, Qi M, et al. Artificial insect wings with biomimetic wing morphology and mechanical properties[J]. Bioinspiration & Biomimetics, 2017,12(5):56007.

[44] Gomez S, Gilkey L, Kaiser B, et al. Computational analysis of a tip vortex structure shed from a bio-inspired blade: 32nd AIAA Applied Aerodynamics Conference[C], Atlanta, GA, 2014.

[45] Poroseva S, Charley D R, Vorobieff P. Experimental drag study of the bio-inspired rotor hub shape: AIAA AVIATION 2020 FORUM[C], 2020.

[46] Starkweather R M, Poroseva S V, Hanson D T. On the shape of cicada's wing leading-edge cross section[J]. Scientific Reports, 2021,11(1).

[47] Phan H V, Truong Q T, Park H C. Extremely large sweep amplitude enables high wing loading in giant hovering insects[J]. Bioinspiration & Biomimetics, 2019,14(6):66006.

[48] Phan H V, Park H C. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot[J]. Bioinspiration & Biomimetics, 2018,13(3):36009.

[49] Wootton R. The geometry and mechanics of insect wing deformations in flight: A modelling approach[J]. Insects, 2020,11(7):446.

[50] Sane S P. The aerodynamics of insect flight[J]. Journal of Experimental Biology, 2003,206(23):4191-4208.

[51] 孙茂. 昆虫飞行的空气动力学[J]. 力学进展, 2015,45:201501.

[52] Lehmann F, Pick S. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings[J]. Journal of Experimental Biology, 2007,210(8):1362-1377.

[53] Scoble M J. The Lepidoptera: Form, Function and Diversity[M]. New York: Oxford University Press, 1992.

[54] Gorb S N, Goodwyn P J P. Wing-locking mechanisms in aquatic Heteroptera[J]. Journal of Morphology, 2003,257(2):127-146.

[55] Stocks I C. Comparative and functional morphology of wing coupling structures in Trichoptera: Integripalpia[J]. Annales Zoologici Fennici, 2010,47(6):351-386.

[56] Toofani A, Eraghi S H, Khorsandi M, et al. Biomechanical strategies underlying the durability of a wing-to-wing coupling mechanism[J]. Acta Biomaterialia, 2020,110:188-195.

[57] Michels J, Appel E, Gorb S N. Coupling wings with movable hooks – resilin in the wing-interlocking structures of honeybees[J]. Arthropod Structure & Development, 2021,60:101008.

[58] Eraghi S H, Toofani A, Khaheshi A, et al. Wing coupling in bees and wasps: From the underlying science to bioinspired engineering[J]. Advanced Science, 2021,8(16):2004383.

[59] Ma Y, Ren H, Rajabi H, et al. Structure, properties and functions of the forewing-hindwing coupling of honeybees[J]. Journal of Insect Physiology, 2019,118:103936.

[60] Ellington C P, van den Berg C, Willmott A, et al. Leading-edge vortices in insect flight[J]. Nature, 1996,384(19/26):626-630.

[61] van den Berg C, Ellington C P. The three dimensional leading edge vortex of a hovering model hawkmoth[J]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 1997,352(1351):329-340.

[62] Lehmann F O. When wings touch wakes: Understanding locomotor force control by wake wing interference in insect wings[J]. Journal of Experimental Biology, 2008,211(2):224-233.

[63] Ellington C P. The aerodynamics of hovering insect flight. iv. Aeorodynamic mechanisms[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1984,305(1122):79-113.

[64] Sane S P, Dickinson M H. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight[J]. Journal of Experimental Biology, 2002,205(8):1087-1096.

[65] Sun M, Tang J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J]. Journal of Experimental Biology, 2002,205(1):55-70.

[66] Ellington C P. The aerodynamics of hovering insect flight. iii. kinematics[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1984,305(1122):41-78.

[67] Miller L A, Peskin C S. Flexible clap and fling in tiny insect flight[J]. Journal of Experimental Biology, 2009,212(19):3076-3090.

[68] Caetano J V. Model Identification of A Flapping Wing Micro Aerial Vehicle[D]., 2016.

[69] 陈文元, 张卫平. 微型扑翼式仿生飞行器[M]. 上海: 上海交通大学出版社, 2010.

[70] Shyy W, Aono H, Chimakurthi S K, et al. Recent progress in flapping wing aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2010,46(7):284-327.

[71] Phan H V, Park H C. Insect-inspired, tailless, hover-capable flapping-wing robots: Recent progress, challenges, and future directions[J]. Progress in Aerospace Sciences, 2019,111:100573.

[72] Tu Z, Fei F, Deng X. Bio-inspired rapid escape and tight body flip on an at-scale flapping wing hummingbird robot via reinforcement learning[J]. IEEE Transactions on Robotics, 2021,37(5):1742-1751.

[73] Keennon M T, Grasmeyer J M. Development of the black widow and microbat MAVs and a vision of the future of MAV design: AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Y[C], Dayton, Ohio, 2003.

[74] Holness A E, Bruck H A, Gupta S K. Characterizing and modeling the enhancement of lift and payload capacity resulting from thrust augmentation in a propeller-assisted flapping wing air vehicle[J]. International Journal of Micro Air Vehicles, 2018,10(1):50-69.

[75] Mackenzie D. A flapping of wings[J]. Science, 2012,335(6075):1430-1433.

[76] Yang W, Wang L, Song B. Dove: A biomimetic flapping-wing micro air vehicle[J]. International Journal of Micro Air Vehicles, 2018,10(1):70-84.

[77] 曾锐. 仿鸟微型扑翼飞行器的气动特性研究[D]. 南京航空航天大学, 2004.

[78] 中国“仿生”无人机:“天鹰”仿鸟扑翼飞行器亮相[EB/OL]. https://www.chinanews.com/mil/2012/06-05/3940083.shtml.

[79] 姜哲, 苏刚. 微型扑翼飞行器系统设计与实现: 第三十一届中国控制会议[C], 中国安徽合肥, 2012.

[80] 周启生. 仿生扑翼飞行器设计及空气动力特性研究[D]. 哈尔滨工业大学, 2013.

[81] 谢鹏, 姜洪利, 周超英. 一种仿生扑翼飞行器的设计及动力学分析[J]. 航空动力学报, 2018,33(03):703-710.

[82] 侯宇, 方宗德, 刘岚, 等. 仿生微扑翼飞行器机构动态分析与工程设计方法[J]. 航空学报, 2005,26(2):173-178.

[83] 科普大世界. 北航扑翼机续航时间破世界纪录刚一周,西工大仿鸟飞行器就给破了[EB/OL]. https://baijiahao.baidu.com/s?id=1747917215511497354&wfr=spider&for=pc.

[84] 胡宇群. 微型飞行器中的若干动力学问题研究[D]. 南京航空航天大学, 2002.

[85] 朱保利. 多自由度扑翼微型飞行器设计研究[D]. 南京航空航天大学, 2007.

[86] 高乾. 两自由度扑翼飞行器设计分析与样机实验研究[D]. 哈尔滨工业大学, 2015.

[87] 汪超, 周超英, 谢鹏, 等. 翼型厚度和弯度对前飞扑翼气动性能的影响[J]. 哈尔滨工业大学学报, 2018,50(4):28-35.

[88] KG F A C. Lightweight design with intelligent kinematics[EB/OL]. www.festo.com/bionics.

[89] Gaissert N, Mugrauer R, Mugrauer G, et al. Inventing a Micro Aerial Vehicle Inspired by the Mechanics of Dragonfly Flight[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014.

[90] de Croon G C H E, de Clercq K M E, Ruijsink R, et al. Design, aerodynamics, and vision-based control of the DelFly[J]. International Journal of Micro Air Vehicles, 2009,1(2):71-97.

[91] Phan H V, Park H C. Mechanisms of collision recovery in flying beetles and flapping-wing robots[J]. Science, 2020,370(6521):1214-1219.

[92] Nguyen Q, Chan W L. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation[J]. Bioinspiration & Biomimetics, 2019,14(1):16015.

[93] Tu Z, Fei F, Zhang J, et al. An at-scale tailless flapping-wing hummingbird robot. I. Design, optimization, and experimental validation[J]. IEEE Transactions on Robotics, 2020,36(5):1511-1525.

[94] Tu Z, Fei F, Deng X. Untethered flight of an at-scale dual-motor hummingbird robot with bio-inspired decoupled wings[J]. IEEE Robotics and Automation Letters, 2020,5(3):4194-4201.

[95] Wood R J. The first takeoff of a biologically inspired at-scale robotic insect[J]. IEEE Transactions on Robotics, 2008,24(2):341-347.

[96] Wood R J, Avadhanula S, Sahai R, et al. Microrobot design using fiber reinforced composites[J]. Journal of Mechanical Design, 2008,130(5):680-682.

[97] Jafferis N T, Helbling E F, Karpelson M, et al. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle[J]. Nature, 2019,570(7762):491-495.

[98] Roll J A, Cheng B, Deng X. An electromagnetic actuator for high-frequency flapping-wing microair vehicles[J]. IEEE Transactions on Robotics, 2015,31(2):400-414.

[99] Roll J A, Bardroff D T, Deng X. Mechanics of a scalable high frequency flapping wing robotic platform capable of lift-off: 2016 IEEE International Conference on Robotics and Automation (ICRA)[C], Stockholm, Sweden, 2016.

[100] Zhou S, Zhang W, Zou Y, et al. Piezoelectric-driven self-assembling micro air vehicle with bionic reciprocating wings[J]. Electronics Letters, 2018,54(9):551-552.

[101] Zou Y, Zhang W, Zhang Z. Liftoff of an electromagnetically driven insect-inspired flapping-wing robot[J]. IEEE Transactions on Robotics, 2016,32(5):1285-1289.

[102] Yan X, Qi M, Lin L. Self-lifting artificial insect wings via electrostatic flapping actuators: 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)[C], 2015.

[103] Liu Z, Yan X, Qi M, et al. Low-voltage electromagnetic actuators for flapping-wing micro aerial vehicles[J]. Sensors and Actuators A: Physical, 2017,265:1-9.

[104] Crall J D, Chang J J, Oppenheimer R L, et al. Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence[J]. Interface Focus, 2017,7:20160086.

[105] Woodward M A, Sitti M. Morphological intelligence counters foot slipping in the desert locust and dynamic robots[J]. Proceedings of the National Academy of Sciences, 2018,115(36):E8358-E8367.

[106] Ji A, Han L, Dai Z. Adhesive contact in animal: Morphology, mechanism and bio-inspired application[J]. Journal of bionics engineering, 2011,8(4):345-356.

[107] Dai Z, Gorb S N, Schwarz U. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae)[J]. Journal of Experimental Biology, 2002,205(16):2479-2488.

[108] Sane S P, Dickinson M H. The control of flight force by a flapping wing: Lift and drag production[J]. Journal of Experimental Biology, 2001,204(15):2607-2626.

[109] Meng X, Liu Y, Sun M. Aerodynamics of ascending flight in fruit flies[J]. Journal of Bionic Engineering, 2017,14(1):75-87.

[110] Liang B, Sun M. Aerodynamic interactions between wing and body of a model insect in forward flight and maneuvers[J]. Journal of Bionic Engineering, 2013,10(1):19-27.

[111] Wang X X, Wu Z N. Stroke-averaged lift forces due to vortex rings and their mutual interactions for a flapping flight model[J]. Journal of Fluid Mechanics, 2010,654:453-472.

[112] Ristroph L, Bergou A J, Ristroph G, et al. Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles[J]. Proceedings of the National Academy of Sciences, 2010,107(11):4820-4824.

[113] Muijres F T, Elzinga M J, Melis J M, et al. Flies evade looming targets by executing rapid visually directed banked turns[J]. Science, 2014,344(6180):172-177.

[114] Beutel R G, Gorb S N. Ultrastructure of attachment specializations of hexapods (Arthropoda): Evolutionary patterns inferred from a revised ordinal phylogeny[J]. Journal of Zoological Systematics and Evolutionary Research, 2010,39(4):177-207.

[115] Federle W, Riehle M, Curtis A S G, et al. An integrative study of insect adhesion: Mechanics and wet adhesion of pretarsal pads in ants[J]. Integrative and Comparative Biology, 2002,42(6):1100-1106.

[116] Song Y, Dai Z, Wang Z, et al. The synergy between the insect-inspired claws and adhesive pads increases the attachment ability on various rough surfaces[J]. Scientific Reports, 2016,6(1):26219-26227.

[117] Asbeck A T, Kim S, Cutkosky M R, et al. Scaling hard vertical surfaces with compliant microspine arrays[J]. The International Journal of Robotics Research, 2006,25(12):1165-1179.

[118] Xu F, Wang X, Jiang G. Design and analysis of a wall-climbing robot based on a mechanism utilizing hook-like claws[J]. International Journal of Advanced Robotic Systems, 2012,9(261):1-12.

[119] Ji A, Zhao Z, Manoonpong P, et al. A bio-inspired climbing robot with flexible pads and claws[J]. Journal of Bionic Engineering, 2018,15(2):368-378.

[120] Chen D L, Zhang Q, Liu S Z. Design and realization of a flexible claw of rough wall climbing robot[J]. Advanced Materials Research, 2011,328-330:388-392.

[121] Daltorio K A, Wei T E, Gorb S N, et al. Passive foot design and contact area analysis for climbing mini-whegs: IEEE International Conference on Robotics and Automation[C], Roma, Italy, 2007.

[122] Kim S, Spenko M, Trujillo S, et al. Smooth vertical surface climbing with directional adhesion[J]. IEEE Transactions on Robotics, 2008,24(1):65-74.

[123] Henrey M, Ahmed A, Boscariol P, et al. Abigaille-Ⅲ: A versatile, bioinspired hexapod for scaling smooth vertical surfaces[J]. Journal of Bionic Engineering, 2014,11(1):1-17.

[124] Birkmeyer P, Gillies A G, Fearing R S. Dynamic climbing of near-vertical smooth surfaces: IEEE/RSJ International Conference on Intelligent Robots & Systems[C], 2012.

[125] Daltorio K A, Horchler A D, Gorb S, et al. A small wall-walking robot with compliant, adhesive feet: IEEE/RSJ International Conference on Intelligent Robots & Systems[C], 2005.

[126] Xu Z, Ma P. A wall-climbing robot for labelling scale of oil tank's volume[J]. Robotica, 2002,20(2):209-212.

[127] La Rosa G, Messina M, Muscato G, et al. A low-cost lightweight climbing robot for the inspection of vertical surfaces[J]. Mechatronics (Oxford), 2002,12(1):71-96.

[128] Zufferey J C, Klaptocz A, Beyeler A, et al. A 10-gram vision-based flying robot[J]. Advanced Robotics, 2007,21:1671-1684.

[129] Kim H J, Kim M, Lim H, et al. Fully autonomous vision-based net-recovery landing system for a fixed-wing UAV[J]. IEEE/ASME Transactions on Mechatronics, 2013,18(4):1320-1333.

[130] Shi X, Spieler P, Tang E, et al. Adaptive nonlinear control of fixed-wing VTOL with airflow vector sensing: IEEE International Conference on Robotics and Automation (ICRA)[C], Paris, France, 2020.

[131] Crowther B, Lanzon A, Maya-Gonzalez M, et al. Kinematic analysis and control design for a nonplanar multirotor vehicle[J]. Journal of Guidance, Control, and Dynamics, 2011,34(4):1157-1171.

[132] Mahony R, Kumar V, Corke P. Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor[J]. IEEE Robotics & Automation Magazine, 2012,19(3):20-32.

[133] Brescianini D, D Andrea R. An omni-directional multirotor vehicle[J]. Mechatronics, 2018,55:76-93.

[134] Phan H V, Au T K L, Park H C. Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle[J]. Royal Society Open Science, 2016,3:160746.

[135] Dudek G, Giguere P, Prahacs C, et al. AQUA: An amphibious autonomous robot[J]. Computer, 2007,40:46-53.

[136] Ijspeert A J, Crespi A, Ryczko D, et al. From swimming to walking with a salamander robot driven by a spinal cord model[J]. Science, 2007,315(5817):1416-1420.

[137] Li L, Wang S, Zhang Y, et al. Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces[J]. Science Robotics, 2022,7(66):m6695.

[138] Bachmann R J, Vaidyanathan R, Quinn R D. Drive train design enabling locomotion transition of a small hybrid air-land vehicle: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems[C], St. Louis, MO, USA, 2009.

[139] Daler L, Lecoeur J, Hahlen P B, et al. A flying robot with adaptive morphology for multi-modal locomotion: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems[C], Tokyo, Japan, 2014.

[140] Bachmann R, Boria F J, Ifju P G, et al. Utility of a sensor platform capable of aerial and terrestrial locomotion: Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics[C], Monterey, California, USA, 2005.

[141] Kovač M, Zufferey J C, Floreano D. Towards a Self-Deploying and Gliding Robot[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

[142] Kalantari A, Spenko M. Design and experimental validation of HyTAQ, a hybrid terrestrial and aerial quadrotor: IEEE International Conference on Robotics and Automation (ICRA)[C], Karlsruhe, Germany, 2013.

[143] Wang H, Shi J, Wang J, et al. Design and modeling of a novel transformable land/air robot[J]. International Journal of Aerospace Engineering, 2019,2019:1-10.

[144] Pratt C J, Leang K K. Dynamic underactuated flying-walking (DUCK) robot: IEEE International Conference on Robotics and Automation (ICRA)[C], 2016.

[145] Peterson K, Birkmeyer P, Dudley R, et al. A wing-assisted running robot and implications for avian flight evolution[J]. Bioinspiration & Biomimetics, 2011,6(4):46008.

[146] Kim K, Spieler P, Lupu E, et al. A bipedal walking robot that can fly, slackline, and skateboard[J]. Science Robotics, 2021,6(59):f8136.

[147] Lussier Desbiens A, Asbeck A T, Cutkosky M R. Landing, perching and taking off from vertical surfaces[J]. The International Journal of Robotics Research, 2011,30(3):355-370.

[148] Dickson J D, Clark J E. Design of a multimodal climbing and gliding robotic platform[J]. IEEE/ASME Transactions on Mechatronics, 2013,18(2):494-505.

[149] Pope M T, Kimes C W, Jiang H, et al. A multimodal robot for perching and climbing on vertical outdoor surfaces[J]. IEEE Transactions on Robotics, 2017,33(1):38-48.

[150] Myeong W C, Jung K Y, Jung S W, et al. Development of a drone-type wall-sticking and climbing robot: International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)[C], Goyang city, Korea, 2015.

[151] Li L, Guo C, Li X, et al. Microstructure and mechanical properties of rostrum in Cyrtotrachelus longimanus (Coleoptera: Curculionidae)[J]. Animal Cells and Systems, 2017,21(3):199-206.

[152] Feng Q. Review of current biomineralization and biomimetic materials[J]. Journal of Tsinghua University: Science and Technology, 2005,45(3):378-383.

[153] Li L, Guo C, Xu S, et al. Morphology and nanoindentation properties of mouthparts inCyrtotrachelus longimanus (Coleoptera: curculionidae)[J]. Microscopy Research and Technique, 2017,80(7):704-711.

[154] Wan H, Dong H, Gai K. Computational investigation of cicada aerodynamics in forward flight[J]. Journal of The Royal Society Interface, 2015,12(102):20141116.

[155] Dirks, Jan-Henning. Fracture toughness of locust cuticle[J]. Journal of Experimental Biology, 2012,215:1502-1508.

[156] Chen P Y, Lin A, Lin Y S, et al. Structure and mechanical properties of selected biological materials[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008,1(3):208-226.

[157] Tuo W, Chen J, Wu Z, et al. Characteristics of the tensile mechanical properties of fresh and dry forewings of beetles[J]. Materials Science and Engineering C, 2016,65:51-58.

[158] Sunada S, Zeng L, Kawachi K. The relationship between dragonfly wing structure and torsional deformation[J]. Journal of Theoretical Biology, 1998,193(1):39-45.

[159] Lehmann F, Gorb S, Nasir N, et al. Elastic deformation and energy loss of flapping fly wings[J]. Journal of Experimental Biology, 2011,214(17):2949-2961.

[160] Autumn K, Liang Y A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair[J]. Nature, 2000,405:681-685.

[161] Hansen W R, Autumn K. Evidence for self-cleaning in gecko setae[J]. Proceedings of the National Academy of Sciences, 2005,102(2):385-389.

[162] Rizzo N W, Gardner K H, Walls D J, et al. Characterization of the structure and composition of gecko adhesive setae[J]. Journal of the Royal Society Interface, 2006,3:441-451.

[163] Tian Y, Pesika N, Zeng H, et al. Adhesion and friction in gecko toe attachment and detachment[J]. Proceedings of the National Academy of Sciences, 2006,103(51):19320-19325.

[164] Senda K, Obara T, Kitamura M, et al. Effects of structural flexibility of wings in flapping flight of butterfly[J]. Bioinspiration & Biomimetics, 2012,7(2):25002.

[165] Mou X L, Liu Y P, Sun M. Wing motion measurement and aerodynamics of hovering true hoverflies[J]. Journal of Experimental Biology, 2011,214(17):2832-2844.

[166] Chen Y H, Skote M, Zhao Y, et al. Dragonfly (Sympetrum flaveolum) flight: Kinematic measurement and modelling[J]. Journal of Fluids and Structures, 2013,40:115-126.

[167] Cheng X, Sun M. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight[J]. Scientific Reports, 2016,6(1):25706.

[168] 张永立, 赵创新, 徐进良. 扑翼轨迹对空气动力的影响[J]. 科学通报, 2006(06):634-640.

[169] Tu M S, Dickinson M H. The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina)[J]. Journal of Comparative Physiology A-Neuroethology, Sensory, Neural, and Behavioral Physiology, 1996,178:813-830.

[170] Ennos A R. The importance of torsion in the design of insect wings[J]. Journal of Experimental Biology, 1988,140(1):137-160.

[171] Senda K, Obara T, Kitamura M, et al. Effects of structural flexibility of wings in flapping flight of butterfly[J]. Bioinspiration & Biomimetics, 2012,7:25002.

[172] Mahjoubi H. Passive Dynamics and Maneuverability in Flapping-Wing Robots[D]. University of California, 2013.

[173] Park J H, Yoon K J, Park H C. Development of Bio-mimetic composite wing structures and experimental study on flapping characteristics: Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics[C], Sanya, China, 2008.

[174] Bhayu P R, Nguyen Q, Park H C, et al. Artificial cambered-wing for a beetle-mimicking flapper[J]. Journal of Bionic Engineering, 2010.

[175] Fan F, Roll J A, Deng X. Design principle of wing rotational hinge stiffness: 2015 IEEE International Conference on Robotics and Automation (ICRA)[C], 2015.

[176] Chaudhuri A, Haftka R T, Ifju P, et al. Experimental flapping wing optimization and uncertainty quantification using limited samples[J]. Structural and Multidisciplinary Optimization, 2015,51(4):957-970.

[177] 亚历山大·安德留科夫, 巴特·迪安·希布斯, 约翰·彼得·兹万, et al. Air vehicle flight mechanism and control method:

[178] Ellington C P. The aerodynamics of hovering insect flight. II. Morphological parameters[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1984,305(1122):17-40.

[179] Nan Y, Karásek M J, Lalami M E, et al. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle[J]. Bioinspiration & Biomimetics, 2017,12(2):26010.

[180] Coleman D, Benedict M, Hirishikeshaven V, et al. Development of a robotic hummingbird capable of controlled hover[J]. Journal of the American Helicopter Society, 2017,62(3):1-9.

[181] Muhammad A, Nguyen Q V, Park H C, et al. Improvement of artificial foldable wing models by mimicking the unfolding/folding mechanism of a beetle hind wing[J]. Journal of Bionic Engineering, 2010,7(2):134-141.

[182] Haas F, Gorb S, Blickhan R. The function of resilin in beetle wings[J]. Proceedings of the Royal Society B-Biological Sciences, 2000,267(1451):1375-1381.

[183] István M, Copeland R S, Balhoff J P, et al. Folding wings like a cockroach: A review of transverse wing folding ensign wasps (Hymenoptera: Evaniidae: Afrevania and Trissevania)[J]. PloS One, 2014,9(5):e94056.

[184] Gremillion G, Samuel P, Humbert J S, et al. Yaw feedback control of a bio-inspired flapping wing vehicle: SPIE[C], 2012.

[185] Bruggeman B. Improving Flight Performance of DelFly II in Hover by Improving Wing Design and Driving Mechanism[D]. Delft University of Technology, 2010.

[186] Card G, Dickinson M. Performance trade-offs in the flight initiation of Drosophila[J]. Journal of Experimental Biology, 2008,211:341-353.

[187] Balebail S, Raja S K, Sane S P. Landing maneuvers of houseflies on vertical and inverted surfaces[J]. PLoS One, 2019,14(8):e219861.

[188] Liu P, Sane S P, Mongeau J M, et al. Flies land upside down on a ceiling using rapid visually mediated rotational maneuvers[J]. Science Advances, 2019,5(10):x1877.

[189] Bergou A J, Xu S, Wang Z J. Passive wing pitch reversal in insect flight[J]. Journal of Fluid Mechanics, 2007,591:321-337.

[190] Wang Z J. Vortex shedding and frequency selection in flapping flight[J]. Journal of Fluid Mechanics, 2000,410(410):323-341.

[191] Peskin C S. The immersed boundary method[J]. Acta Numerica, 2002,11:479-517.

[192] Mittal R, Iaccarino G. Immersed boundary method[J]. Annual Review of Fluid Mechanics, 2010,14(37):239-261.

[193] Succi S. The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond[M]. Oxford: Oxford University Press, 2001.

[194] Kruger T, Varnik F, Raabe D. Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method[J]. Computers & Mathematics with Applications, 2011,61(12):3485-3505.

[195] 李倩. 基于XFlow的半转翼类昆虫升力形成机制研究[D]. 马鞍山: 安徽工业大学, 2018.

[196] Jemcov A, Maruszewski J, Kelly R, et al. A new form of generalized wall function: AIAA Scitech 2019 Forum[C], 2019.

[197] Autumn K, Sitti M, Liang Y A, et al. Evidence for van der Waals adhesion in gecko setae[J]. Proceedings of the National Academy of Sciences, 2002,99(19):12252-12256.

[198] Kamperman M, Kroner E, Del Campo A, et al. Functional adhesive surfaces with "Gecko" effect: The concept of contact splitting[J]. Advanced Engineering Materials, 2010,12(5):335-348.

[199] Kendall K. Thin-film peeling-the elastic term[J]. Journal of Physics. D, Applied Physics, 1975,8(13):1449-1452.

[200] Kim J, Kim K S, Kim Y H. Mechanical effects in peel adhesion test[J]. Journal of Adhesion Science and Technology, 1989,3(1):175-187.

[201] Kim J, Da W K, Baik S, et al. Snail‐inspired dry adhesive with embedded microstructures for enhancement of energy dissipation[J]. Advanced Materials Technologies, 2019,4(11):1900316.

[202] Liu J, Xu L, Xu J, et al. Design, modeling and experimentation of a biomimetic wall-climbing robot for multiple surfaces[J]. Journal of Bionic Engineering, 2020,17(3):523-538.

[203] Lee C H, Kim D R, Cho I S, et al. Peel-and-stick: Fabricating thin film solar cell on universal substrates[J]. Scientific Reports, 2012,2(1).

[204] Chin Y W, Kok J M, Zhu Y Q, et al. Efficient flapping wing drone arrests high-speed flight using post-stall soaring[J]. Science Robotics, 2020,5:a2386.

[205] Hedrick T L. Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems[J]. Bioinspiration & Biomimetics, 2008,3(3):34001.

[206] Hatze H. High-precision three-dimensional photogrammetric calibration and object space reconstruction using a modified DLT-approach[J]. Journal of Biomechanics, 1988,21(7):533-538.

[207] Stevens B L, Lewis F L, Johnson E N. Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems[M]. Third Edition. WILEY, 2020.

[208] Craig J J. Introduction to Robotics: Mechanics and Control[M]. Pearson Education, Inc, 1986.

[209] Farisenkov S E, Kolomenskiy D, Petrov P N, et al. Novel flight style and light wings boost flight performance of tiny beetles[J]. Nature, 2022,602(7895):96-100.

[210] Wang Z J, Melfi J, Leonardo A. Recovery mechanisms in the dragonfly righting reflex[J]. Science, 2022,376:754-758.

[211] Roth L M, Willis E R. Tarsal structure and climbing ability of cockroaches[J]. Journal of Experimental Zoology, 1952,119:483-517.

[212] Zakharov L Z. The climbing of the migratory locust on plants in the evening[J]. Bulletin of the North Caucasian Plant Protection Station, 1930.

中图分类号:

 TP242    

馆藏号:

 2023-005-0470    

开放日期:

 2023-12-10    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式