题名: |
温差核电池的性能优化、瞬态分析及其特殊构型热电腿的设计与制备
|
作者: |
边明鑫
|
学号: |
BX1806901
|
保密级别: |
公开
|
语种: |
chi
|
学科代码: |
0805Z1
|
学科: |
工学 - 材料科学与工程 - 材料科学与工程(核技术与材料工程)
|
学生类型: |
博士
|
学位: |
工学博士
|
入学年份: |
2018
|
学校: |
南京航空航天大学
|
院系: |
材料科学与技术学院
|
专业: |
材料科学与工程(核技术与材料工程)
|
研究方向: |
空间核能源与能量转换技术
|
导师姓名: |
汤晓斌
|
导师单位: |
材料科学与技术学院
|
完成日期: |
2025-01-15
|
答辩日期: |
2025-03-15
|
外文题名: |
Performance optimization, transient analysis, design and fabrication of thermoelectric leg with special configuration of radioisotope thermoelectric generator
|
关键词: |
温差核电池 ; 电学输出 ; 瞬态分析 ; 特殊构型 ; 热电浆料
|
外文关键词: |
Radioisotope thermoelectric generator ; Electrical output ; Transient analysis ; Special geometrical shapes ; Thermoelectric slurry
  ;
|
摘要: |
︿
温差核电池(Radioisotope thermoelectric generator, RTG)具有长寿命、小体积和高能量密度的特点,在深空探测任务中展现出巨大的应用潜力。然而,其较低的输出功率、能量转换效率以及有限的服役稳定性,限制了RTG在深空探测中的广泛应用。随着探测任务对电源需求的多样化以及制备技术的不断进步,促使研究人员从高性能热电材料研发、小型化、几何结构优化、稳定性提升等多方面改进RTG的设计,以提升电学输出并延长服役寿命。本文针对使用高温热源或服役于具有较大温度梯度环境中的双级RTG,对其电学输出和机械稳定性进行了综合优化,并深入分析了其在冷/热冲击条件下电学输出、机械稳定性和热力学性能的瞬态变化特性;提出了两种具有特殊几何形状的热电腿来改善RTG的电学输出性能,并采用直写式3D打印技术实现了制备。主要研究内容及成果如下:
(1)使用非支配排序遗传算法-II(Non-dominated Sorting Genetic Algorithm-II, NSGA-II)对双级热电器件的电学输出和机械稳定性进行了综合优化。将能量转换效率(ηtwo)设定为电学性能的优化目标,将冷级与热级热电器件中热电腿内的最大von Mises应力(VonBT, VonSKD)设定为机械稳定性的优化目标,对这三个目标赋予权重并组成权重因子,采用逼近理想解排序法(Technique for Order Preference by Similarity to Ideal Solution, TOPSIS)从最优解集中筛选出合适的最优解。优化结果表明,三个目标之间具有显著的相互影响,三者的重要性排序为VonSKD>ηtwo>VonBT,且热级热电器件具有比冷级热电器件更大的重要性与影响力。根据不同权重因子选择得到的热电器件具有不同的结构参数,从而表现出不同的电学输出性能和机械稳定性,以及不同的电学输出特性。
(2)分析了双级热电器件在冷/热冲击条件下电学输出与机械稳定性的瞬态变化特性。设置了正弦波和方波两种冲击模型,每种模型中包含五种冲击能量相同、而冲击时间和功率不同的冲击模式。电学输出性能在正弦波模型的冷/热冲击的波峰时刻达到最大值和最小值,而在方波模型的冷/热冲击的结束时刻达到最大值和最小值。机械稳定性在正弦波和方波模型中的差异较小,VonSKD和VonBT在两种模型中达到的最大值相差小于2%。在相同冲击能量下,热冲击对电学输出和机械稳定性的影响明显高于冷冲击。此外,电学输出和机械稳定性的变化幅值随冲击时间的延长而增加。由于碲化铋级热电器件的阻挡作用,方钴矿级热电器件的电学输出与机械稳定性的变化幅值低于碲化铋级热电器件。
(3)分析了双级热电器件在冷/热冲击条件下热力学性能的瞬态变化及内部Cu电极的疲劳行为。在热冲击作用时,双级热电器件的温度升高,导致进入器件的有效能减少,而消耗在Cu电极和陶瓷板等非能量转换部件中的有效能比例有所增加;在冷冲击作用时,则呈现相反的趋势。这种变化规律与电学输出的变化相互印证。双级热电器件的熵增速率和不可逆性在热冲击过程中降低,而在散热和冷冲击过程中升高,在整个冲击过程中呈上升趋势。靠近冷端的Cu电极因承受较大的温度变化,导致其循环次数较低;而靠近热端的Cu电极则因承受较高的温度,存在Cu原子扩散的风险。因此,需要针对不同问题采取相应措施,以增强RTG的输出性能并延长服役寿命。
(4)提出了螺旋构型和轮辐构型两种具有特殊几何形状的热电腿,通过增加侧面积、强化侧面散热来提升电学输出性能。螺旋构型热电腿在热电腿的朝向和热流方向之间产生夹角来增加侧面积;轮辐构型热电腿在截面上设置轮辐结构来增加截面周长,从而增加侧面积。分析了两种特殊构型热电腿在恒定功率和恒定温度两种热源条件下的电学输出参数和内部最大von Mises应力随几何参数的变化规律。结果表明,两种特殊构型热电腿的电学输出性能随几何参数的变化而变化,存在最优几何参数使其电学输出性能达到最佳。然而,特殊构型设计使热电腿的侧面出现尖锐的几何形状,从而尖锐部位处产生更大的von Mises应力,在一定程度上降低了机械稳定性。与传统圆柱、方形构型相比,特殊构型热电腿在单腿和集成在热电器件内两种情况下均表现出更高的电学输出性能。
(5)采用直写式3D打印技术实现了上述特殊构型热电腿的成功制备。采用有机溶剂和粘结剂合成一种粘性溶液,并以碲化铋合金粉末作为热电填料、Cu粉作为导电助剂,成功制备出一种适用于直写式3D打印的热电浆料。热电浆料和烧结后的热电材料的测试结果表明,该热电浆料具有适合于3D打印的剪切稀化和粘弹逆变的流变特性;Cu在热电材料中均匀分布,没有与碲化铋反应生成新物质,在为载流子提供导电通路的同时又能促进碲化铋在烧结过程中的结晶行为。P型热电材料的ZTmax为0.91;N型为0.24。采用直写式3D打印技术制备了不同构型的热电腿,并将其拼接成热电模块进行电学性能测试。测试结果与模拟结果的变化趋势一致,表明该热电浆料具有优异的均匀性和稳定性,能够用于特殊形状热电腿的批量制备。
本论文的研究工作涉及温差核电池的输出性能优化、几何结构设计和3D打印制备技术,能够为深空探测任务中的温差核电池的设计、制备和性能优化提供新的研究思路和发展方向。
﹀
|
外摘要要: |
︿
Radioisotope thermoelectric generator (RTG) have the characteristics of long life, small size and high energy density, showing great application potential in deep space exploration missions. However, the low output power, energy conversion efficiency and the limited service stability restrict the widespread application of RTG in deep space exploration. With the diversification of power requirements in exploration missions and the continuous advancement of fabrication technology, researchers have improved the design of RTG in many aspects, such as the development of high-performance thermoelectric materials, miniaturization, optimization of geometrical shapes, and improvement of stability, all of which are aimed at improving electrical output performance and extending service life. This paper comprehensively optimizes the electrical output and mechanical stability of the two-stage RTG which equipped with high-temperature heat source or serving in the environments with large temperature differences, and analyzes in detail the transient changes in its electrical output, mechanical stability and thermodynamics performance under cold and hot shock conditions; two kinds of thermoelectric legs with special geometrical shapes are proposed to improve the output performance of the thermoelectric generators, and the thermoelectric legs with special geometrical shapes are successfully fabricated with direct writing 3D printing technology. The main research contents and results are as follows:
(1) Electrical output and mechanical stability of the two-stage thermoelectric generator are comprehensively optimized using non-dominated sorting genetic algorithm-II (NSGA-II). The energy conversion efficiency (ηtwo) is set as the optimization objective about electrical performance, and the maximum von Mises stress of the thermoelectric legs in the cold and hot stage thermoelectric generator (VonBT, VonSKD) are set as the optimization objectives about mechanical stability. Weights are assigned to the three objectives to form weight factor, and the appropriate optimal solution are selected from the optimal solution set with technique for order preference by similarity to ideal solution (TOPSIS). Optimization results show that there are significant mutual influences among the three objectives, and the importance is ranked as: VonSKD>ηtwo>VonBT. Hot-stage thermoelectric generator has greater importance and influence than the cold-stage thermoelectric generator. The thermoelectric generators selected according to different weight factors have different structural parameters, thereby showing different electrical output and mechanical stability, as well as different electrical output characteristics.
(2) Transient change of the electrical output and mechanical stability of the two-stage thermoelectric generator under cold/hot shock conditions are analyzed. Two shock models: sinusoidal wave and square wave are set up, and each model contains five shock modes with the same shock energy but different shock time and power. Electrical output performance reaches the maximum and minimum values at the peak of the cold/hot shock in the sinusoidal wave model, but reaches the maximum and minimum values at the end of the cold/hot shock time in the square wave model. The difference in mechanical stability between the sinusoidal wave and square wave models is small, and the maximum values reached by VonSKD and VonBT in the two models differed by less than 2%. Under the same shock energy, the effect of thermal shock on electrical output and mechanical stability is significantly greater than that of cold shock. In addition, the change amplitude of electrical output and mechanical stability increases with the extension of shock time. Due to the block of bismuth telluride-stage thermoelectric generator, the change amplitude of the electrical output and mechanical stability of the skutterudite-stage thermoelectric generator is lower than that of the bismuth telluride-stage thermoelectric generator.
(3) Transient changes of the thermodynamic performance of the two-stage thermoelectric generator under cold/hot shock conditions as well as the fatigue behavior of the Cu electrode are analyzed. During the thermal shock, the temperature of the two-stage thermoelectric generator increases, resulting in a decrease of the exergy entering the thermoelectric generator, while the proportion of exergy consumed in non-energy conversion components such as Cu electrode and ceramic plate increases. During the cold shock, the opposite trend is presented. This change pattern is mutually confirmed by the change in the electrical output. The entropy generation rate and irreversibility of the two-stage thermoelectric generator decrease during the thermal shock, but increase during the heat dissipation and cold shock, showing an upward trend during the entire cold/hot shock process. Cu electrodes near the cold side are subjected to greater temperature changes, resulting in the lower number of cycles; while the Cu electrodes near the hot sides are subjected to higher temperatures, which poses a risk of Cu atom diffusion. Therefore, corresponding measures need to be taken for different problems to enhance the output performance and extend the service life of RTG.
(4) Two kinds of thermoelectric legs with special geometrical shapes, named helix-shaped and spoke-shaped, are proposed to improve the electrical output performance by increasing the side area and the heat dissipation occurred on the side. The helix-shaped thermoelectric leg increases the side area by creating an angle between the orientation of the thermoelectric leg and the direction of heat flow; and the spoke-shaped thermoelectric leg increases the side area by increasing the circumference of cross-section by setting spokes in cross section. Variation trends of the electrical output parameters and the internal maximum von Mises stress with geometrical parameters of the two thermoelectric legs with special geometrical shapes under two heat source conditions of constant power and constant temperature are analyzed. Results show that the electrical output parameters vary with the geometrical parameters, and there are optimal geometrical parameters to achieve the best electrical output performance. However, the special geometrical design makes the sides of the thermoelectric legs appear sharp, which generates greater von Mises stress at these sharp and reduces the mechanical stability to a certain extent. Compared with traditional cylindrical and square shapes, the thermoelectric legs with special geometrical shapes show higher electrical output performance both in single-leg cases and integrated into thermoelectric generators.
(5) The above thermoelectric legs with special geometrical shapes are successfully fabricated using direct writing 3D printing technology. A thermoelectric slurry suitable for direct writing 3D printing is successfully prepared, in which an organic solvent and binder are used to synthesize a viscous solution, bismuth telluride alloy powder is used as the thermoelectric filler, and Cu powder is used as the conductive additive. Test results of the thermoelectric slurry and sintered thermoelectric material show that the thermoelectric slurry has the rheological properties of shear thinning and viscoelastic transformation, which is suitable for 3D printing; Cu is evenly distributed in the thermoelectric materials and does not react with bismuth telluride to generate new substances; Cu can provide conductive paths for carriers and promote the crystallization of bismuth telluride during the sintering process. ZTmax of P-type thermoelectric material is 0.91; and that of N-type is 0.24. Thermoelectric legs with different geometrical shapes are fabricated using direct writing 3D printing technology and assembled into thermoelectric modules for testing electrical output characteristics. Variation trends in the test results are consistent with those in the simulation results, which indicates that the thermoelectric slurry has excellent uniformity and stability and can be used to fabricate thermoelectric legs with special shapes in batches.
The research work in this paper involves the output performance optimization, geometrical shape design and 3D printing fabrication technology of RTG, which can provide new research ideas and development directions about the design, fabrication and performance optimization of RTG used in deep space exploration missions.
﹀
|
参考文献: |
︿
[1] 张众, 武迪, 宝音贺西. 深空探测任务进展与展望[J]. 上海航天(中英文), 2024, 41(05): 52-68. [2] 刘峣. 中国深空探测走向更深更远[N]. 人民日报海外版, 2024-10-24(009). [3] Michael H, Venkat K, Richard S, et al. Moore’s law and space exploration: new insights and next steps[J]. Journal of the Arkansas Academy of Science, 2019, 73.1: 13-17. [4] Erdem T, Stefano S, Eberhard G. Autonomous navigation for deep space small satellites: Scientific and technological advances[J]. Acta Astronautica, 2022, 193: 56-74. [5] 张嘉毅. 太空核推进技术引领深空探索动力变革[J]. 国际太空, 2024, (01): 52-55. [6] WeiRen W, WangWang L, Dong Q, et al. Investigation on the development of deep space exploration[J]. Science China Technological Sciences, 2012, 55: 1086-1091. [7] 张扬眉. 2023年国外深空探测领域发展综述[J], 国际太空, 2024, (03): 11-15. [8] Stephane M. Electric propulsion for satellites and spacecraft: established technologies and novel approaches[J]. Plasma Sources Science and Technology, 2016, 25: 3. [9] Suk H Y, Hideaki O, Daniel K, et al. Miniaturization perspectives of electrostatic propulsion for small spacecraft platforms[J]. Progress in Aerospace Sciences, 2021, 126: 100742. [10] 牛厂磊, 罗志福, 雷英俊, 等. 深空探测先进电源技术综述[J]. 深空探测学报, 2020, 7(01): 24-34. [11] 黄才勇. 空间电源的研究现状与展望[J]. 电子科学技术评论, 2004, (05): 1-6. [12] 张文佳, 刘治钢, 张晓峰, 等. 木星环绕探测器电源系统设计研究[J]. 航天器工程, 2019, 28(02): 97-103. [13] Oleson S, Gefert L, Patterson M, et al. Outer planet exploration with advanced radioisotope electric propulsion[C]. 27th International Electric Propulsion Conference, 2002, No. NASA/TM-2002-211314. [14] Tibor S. B. Comparison of power system options between future lunar and mars missions[C]. International Lunar Conference 2005 Proceedings, 2005. [15] 马文彬, 张辉, 姚伟, 等. 空间燃料电池金属钛表面复合涂层制备与性能研究[J]. 中国表面工程, 2024, 37(02): 16-26. [16] Anil D. P, Shalakha S, Vikram K B, et al. A review on battery technology for space application[J]. Journal of Energy Storage, 2023, 61: 106792. [17] 陈杨, 李俊峰, 宝音贺西, 等. 多任务小行星探测太阳能电推进轨道设计[C]. 中国宇航学会深空探测技术专业委员会第八届学术年会论文集(上篇), 2011: 7. [18] 胡文军, 刘继忠, 唐玉华, 等. 空间同位素热/电源安全性技术指标体系框架研究[J]. 深空探测学报, 2020, 7(01): 73-80. [19] Yi H, Wenxu S, Peng T. Insight into rechargeable batteries in extreme environment for deep space exploration[J]. Carbon Neutralization, 2024, 3.5: 773-780. [20] Aloysius F. H, Prashant N. K, Oleg I. V, et al. Batteries for aeronautics and space exploration: Recent developments and future prospects[J]. Lithium-Sulfur Batteries, 2022: 531-595. [21] 杨宇光. 空间核电源, 人类深空探测的未来[J]. 军事文摘, 2017, (18): 36-39. [22] Xiawa W, Renrong L, Peter F, et al. Critical design features of thermal-based radioisotope generators: A review of the power solution for polar regions and space[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109572. [23] 王洁炜, 刘凯旋, 杨夷, 等. 空间核电源朗肯循环系统的研究进展[J]. 空间科学学报, 2024, 44(05): 884-893. [24] 陈金利, 薛翔, 王园丁, 等. 空间核电源热电转换技术研究综述[J]. 火箭推进, 2024, 50(04): 42-54. [25] Devasahayam, Sheila, Kim D, et al. Sustainability in the Mineral and Energy Sectors[M]. CRC Press, 2016. [26] 王钊, 夏陈超, 康志宇, 等. 模块化核动力航天器设计及其关键技术[J]. 上海航天, 2019, 36(06): 141-147. [27] 夏彦, 朱凯博, 孙韶蕾, 等. 月面科研站核反应堆电源系统发展现状[J]. 原子能科学技术, 2024, 58(S2): 404-423. [28] Y. X, J. L, R. Z, et al. Application prospect of fission-powered spacecraft in solar system exploration missions[J]. Space: Science & Technology, 2021, 2021: 5245136. [29] Aiden P, Ben L. A review of nuclear electric fission space reactor technologies for achieving high-power output and operating with HALEU fuel[J]. Progress in Nuclear Energy, 2023, 163: 104815. [30] 闫锋哲, 赵强. 空间核反应堆电源技术需求和应用分析[J]. 科技视界, 2019, (18): 52-53. [31] 胡古, 赵守智. 空间核反应堆电源技术概览[J]. 深空探测学报, 2017, 4(05): 430-443. [32] O'Brien, Robert C. Radioisotope and nuclear technologies for space exploration[M]. Diss. University of Leicester, 2010. [33] 王廷兰. 深空探测用同位素电源的研究进展[J]. 电源技术, 2015, 39(07): 1576-1579. [34] Mark A. P, Charles L. W, Matthew L. W, et al. A review of nuclear batteries[J]. Progress in Nuclear Energy, 2014, 75: 117-148. [35] Maria L T. Nuclear batteries: Current context and near-term expectations[J]. International Journal of Energy Research, 2022, 46.14: 19368-19393. [36] 郑海山, 赵国铭. 放射性同位素温差电池的空间应用及前景分析[J]. 电源技术, 2013, 37(07): 667. [37] Kelly C. E. MHW RTG performance during LES 8/9 and voyager missions[M]. Space Nuclear Power Systems, 1987. [38] Richard J. H, Robert D. C. GPHS-RTG performance on the Galileo mission[C]. AIP Conference Proceedings. Vol. 217. No. 2. American Institute of Physics, 1991: 910-915. [39] Francis d W, Gerhard S, Enrique M. The design of a nuclear power supply with a 50 year life expectancy: the JPL Voyager’s SiGe MHW RTG[C]. 34th Intersociety Energy Conversion Engineering Conference, 1999: SAE Technical Paper 1999-01-2586. [40] David F W. The technology of discovery: radioisotope thermoelectric generators and thermoelectric technologies for space exploration[M]. John Wiley & Sons, 2023. [41] H.M. S. Improving the overall efficiency of radioisotope thermoelectric generators[J]. Advances in Energy and Power, 2014, 2.3: 21-26. [42] Muhammad B N, Junho L, Su-Il I. Radioisotope thermoelectric generators (RTGs): a review of current challenges and future applications[J]. Chemical Communications, 2024, 60: 14155-14167. [43] Scott A. W, Christopher A. A, Terrence L. A. Improving power density and efficiency of miniature radioisotopic thermoelectric generators[J]. Journal of Power Sources, 2008, 180.1: 657-663. [44] D.M. R. Applications of nuclear-powered thermoelectric generators in space[J]. Applied Energy, 1991, 40.4: 241-271. [45] R.C. O, R.M. A, N.P. B, et al. Safe radioisotope thermoelectric generators and heat sources for space applications[J]. Journal of Nuclear Materials, 2008, 377.3: 506-521. [46] J. S D, R.A. B. Assessment of alternative radionuclides for use in a radioisotope thermoelectric generator[J]. Nuclear Engineering and Design, 2021, 385: 111475. [47] G G K, A N S, V A A, et al. Assessment of a possibility to use 232U in radioisotope thermoelectric generators[C]. Journal of Physics: Conference Series, 2020: Vol. 1689. No. 1, p.2020. IOP Publishing. [48] Seyed M P, Mohammad H A, Milad S, et al. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials[J]. Energy, 2019, 186: 115849. [49] Daniel C. Thermoelectric generators: A review of applications[J]. Energy conversion and management, 2017, 140: 167-181. [50] Hussam J, Alina Ż, Navid K, et al. Thermoelectric generator (TEG) technologies and applications[J]. International Journal of Thermofluids, 2021, 9: 100063. [51] Mehmet A Ü, Hayati M, Sezai T. Modeling and validation of the thermoelectric generator with considering the change of the Seebeck effect and internal resistance[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2022, 30.7: 2688-2706. [52] Mohamed A Z, Saïd B, John G. S, et al. A review on thermoelectric generators: Progress and applications[J]. Energies, 2020, 13.14: 3606. [53] Nesrine J, Ayda B, Jens M, et al. A comprehensive review of Thermoelectric Generators: Technologies and common applications[J]. Energy Reports, 2020, 6: 264-287. [54] Wenlong Y, WenChao Z, Yang Li, et al. Global structural optimization of annular thermoelectric generators based on a dual-finite-element multiphysical model[J]. Applied Thermal Engineering, 2023, 220: 119797. [55] Andreas S, Christian S, Eckhard M. Preparation of ring-shaped thermoelectric legs from PbTe powders for tubular thermoelectric modules[J]. Journal of Electronic Materials, 2013, 42: 1702-1706. [56] Jiabin Y, Xiaoping L, Deyang Y, et al. Review of micro thermoelectric generator[J]. Journal of Microelectromechanical Systems, 2018, 27.1: 1-18. [57] Hao-Feng L, Ibrahim B. M, Sayed M. E, et al. A novel economic-cost and thermal comparative case study between segmented and non-segmented thin-film solar annular thermoelectric generator[J]. Case Studies in Thermal Engineering, 2023, 42: 102757. [58] Samson S, Guiqiang L, Qindong X, et al. Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux[J]. Energy, 2020, 199: 117433. [59] Ren-E. D, Azher M. A, Pradeep K S, et al. Numerical modeling of a novel hybrid system composed of tubiform solid oxide fuel cell and segmented annular thermoelectric generator (SOFC/SATEG)[J]. Applied Thermal Engineering, 2024, 243: 122706. [60] Man-Wen T, Ibrahim B. M, Sayed M. E, et al. Economic and thermal performance analysis of two-stage thin-film solar thermoelectric power generator[J]. Case Studies in Thermal Engineering, 2023, 45: 103012. [61] Henan S, Ya G, Wei L, et al. Geometric optimization of two-stage thermoelectric generator using genetic algorithms and thermodynamic analysis[J]. Energy, 2019, 171: 37-48. [62] 马世俊, 杜辉, 周继时, 等. 核动力航天器发展历程(上)[J]. 中国航天, 2014, (04): 31-35. [63] 马世俊, 杜辉, 周继时, 等. 核动力航天器发展历程(下)[J]. 中国航天, 2014, (05): 32-35. [64] Gary L. B, Metaspace E, E. W. J, et al. First flights: Nuclear power to advance space exploration[C]. International Air and Space Symposium and Exposition, 2003, poster paper. p.7.7. [65] Gary L. B. Mission interplanetary: Using radioisotope power to explore the solar system[J]. Energy Conversion and Management, 2008, 49.3: 382-392. [66] 侯欣宾, 王立. 美国空间同位素能源装置发展现状[J]. 航天器工程, 2007, (02): 41-49. [67] 苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016. [68] 马世俊, 唐玉华, 朱安文, 等. 空间核动力的进展[M]. 北京: 中国宇航出版社, 2019. [69] Richard M. A, Hugo W, Emily J W, et al. European radioisotope thermoelectric generators (RTGs) and radioisotope heater units (RHUs) for space science and exploration[J]. Space Science Reviews, 2019, 215: 1-41. [70] 蔡善钰, 何舜尧. 空间放射性同位素电池发展回顾和新世纪应用前景[J]. 核科学与工程, 2004, (02): 97-104. [71] 蔡善钰. 放射性同位素电池在月球上[J]. 现代物理知识, 2010, 22(05): 37-40. [72] 罗洪义, 牛厂磊, 吴胜娜, 等. 深空探测中的钚-238同位素电源[J]. 深空探测学报, 2020, 7(01): 61-72. [73] Sanbing W, Chaohui H. Design and analysis of nuclear battery driven by the external neutron source[J]. Annals of Nuclear Energy, 2014, 72: 455-460. [74] Nirmmal S. Radioisotopes-Applications in Physical Sciences[M]. Croatia: Intech, 2011. [75] Thomas H, Russell B, W. O, et al. Multi-mission radioisotope thermoelectric generator (MMRTG) and performance prediction model[C]. 7th International Energy Conversion Engineering Conference, 2009, 4576. [76] Dulyawich P, Sora-at T, Yifan S, et al. Thermoelectric materials for radioisotope thermoelectric generators[J]. Materials Advances, 2024, 5: 5351-5364. [77] William O, Leo G, Thomas H, et al. Preparation of the MMRTG for the Mars Science Laboratory mission[C]. 10th International Energy Conversion Engineering Conference, 2012, AIAA 2012-4062. [78] Teyen W, R.A. B. Experimental determination of interaction between the radiation fields of dragonfly’s MMRTG and titan's environment I: neutron results[J]. Acta Astronautica, 2023, 210: 384-392. [79] Thomas H, Russel B, Steve K, et al. Multi-mission radioisotope thermoelectric generator (MMRTG): proven power for next generation radioisotope power systems[C]. 10th International Energy Conversion Engineering Conference, 2012: 4063. [80] Tom H, Russell B, Bob S. Evolutionary upgrade for the multi-mission radioisotope thermoelectric generator (MMRTG)[C]. 2016 IEEE Aerospace Conference. IEEE, 2016: 1-8. [81] David W. A Progress Report on the eMMRTG[J]. Journal of Electronic Materials, 2016, 45: 1278-1283. [82] Christopher S M, David F. W, Thierry C, et al. A status update on the eMMRTG project[C]. 2019 IEEE Aerospace Conference. IEEE, 2019: 1-9. [83] Tim C. H, Russell B, Tom H, et al. Increasing the efficiency of the multi-mission radioisotope thermoelectric generator[J]. Journal of Electronic Materials, 2015, 44: 1814-1821. [84] Dulyawich P, Sora-at T, Yifan S, et al. Thermoelectric materials for space explorations[J]. Materials Advances, 2024, 5.13: 5351-5364. [85] Jong H P, Kwang J S, Jintae H, et al. Heat transfer analysis for optimal design of radioisotope thermoelectric generator[C]. Transactions of the Korean Nuclear Society Spring Meeting, 2015. [86] 汪进, 魏世平, 金鸣, 等. 同位素电池研发与应用进展[J]. 核科学与工程, 2024, 44(01): 224-232. [87] Mingxin B, Zhiheng X, Xiaobin T, et al. Tri-objective and multi-parameter geometric optimization of two-stage radioisotope thermoelectric generator based on NSGA-II[J]. Applied Thermal Engineering, 2025, 258: 124685. [88] Jintae H, Kwang-Jae S, Jong-Han P, et al. Study on the design of radioisotope thermoelectric generator for earth low orbit test[C]. Transactions of the Korean Nuclear Society Autumn Meeting, 2017. [89] Kai L, Yunpeng L, Zhiheng X, et al. Experimental prototype and simulation optimization of micro-radial milliwatt-power radioisotope thermoelectric generator[J]. Applied Thermal Engineering, 2017, 125: 425-431. [90] Kai L, Xiaobin T, Yunpeng L, et al. Preparation and optimization of miniaturized radioisotope thermoelectric generator based on concentric filament architecture[J]. Journal of Power Sources, 2018, 407: 14-22. [91] Christopher S. R. M, David F. W, Terry J. H, et al. Next-generation radioisotope thermoelectric generator study[C]. 2018 IEEE Aerospace Conference. IEEE, 2018: 1-9. [92] Zicheng Y, Xiaobin T, Zhiheng X, et al. Screen-printed radial structure micro radioisotope thermoelectric generator[J]. Applied Energy, 2018, 225: 746-754. [93] Zicheng Y, Xiaobin T, Yunpeng L, et al. Improving the performance of a screen-printed micro-radioisotope thermoelectric generator through stacking integration[J]. Journal of Power Sources, 2019, 414: 509-516. [94] Kai L, Xiaobin T, Yunpeng L, et al. Experimental optimization of small-scale structure-adjustable radioisotope thermoelectric generators[J]. Applied Energy, 2020, 280: 115907. [95] Wei D, Xuejian W, Xiaodong P, et al. Geometry design and performance optimization of a terrestrial radioisotope thermoelectric generator based on finite element analysis[J]. Annals of Nuclear Energy, 2021, 151: 107883. [96] Mingxin B, Zhiheng X, Caifeng M, et al. Novel geometric design of thermoelectric leg based on 3D printing for radioisotope thermoelectric generator[J]. Applied Thermal Engineering, 2022, 212: 118514. [97] Y. Liu, Y. Zhang, Q. Xiang, et al, Comprehensive modeling and parametric analysis of multi-mission radioisotope thermoelectric generator[J]. Applied Thermal Engineering, 2023, 219: 119447. [98] Hang J, Qingpei X, Rende Z, et al. A skutterudite thermoelectric module with high aspect ratio applied to milliwatt radioisotope thermoelectric generator[J]. Applied Energy, 2023, 350: 121776. [99] Li T, Liu Y, Zhang Y, et al. Comprehensive modeling and characterization of the General-Purpose Heat Source Radioisotope Thermoelectric Generator for solar system missions[J]. Applied Thermal Engineering, 2024, 248: 123278. [100] Krishnadass K, S. S, Mohammed M M H, et al. Evaluation of solar thermal system configurations for thermoelectric generator applications: A critical review[J]. Solar Energy, 2019, 188: 111-142. [101] Murat E D, Ibrahim D. Performance assessment of a thermoelectric generator applied to exhaust waste heat recovery[J]. Applied Thermal Engineering, 2017, 120: 694-707. [102] Kuo H, Yuying Y, Bo L, et al. A novel design of thermoelectric generator for automotive waste heat recovery[J]. Automotive Innovation, 2018, 1: 54-61. [103] Zhiqiang N, Hai D, Shuhai Y, et al. Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine. Energy Conversion and Management, 2014, 85: 85-101. [104] Farzad T, Shahriyar G H, Ata C. Thermoelectric Generators: A comprehensive review of characteristics and applications. Applied Thermal Engineering, 2022, 201: 117793. [105] Wei H, Gan Z, Xingxing Z, et al. Recent development and application of thermoelectric generator and cooler. Applied Energy, 2015, 143: 1-25. [106] Abu R M S, Shohel M, Bill V H. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renewable and Sustainable Energy Reviews, 2017, 73: 730-744. [107] Zohreh S, Stamatis Z, Boris C, et al. A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials. Nano Energy, 2021, 89: 106325. [108] Hailong H, Yi W, Weiwei L, et al. Comprehensive modeling for geometric optimization of a thermoelectric generator module[J]. Energy Conversion and Management, 2019, 183: 645-659. [109] P. F, V. R, O. A, et al. Thermal management of thermoelectric generators for waste energy recovery[J]. Applied Thermal Engineering, 2021, 196: 117291. [110] Minyoung K, Sang-il K, Sung W K, et al. Weighted mobility ratio engineering for high‐performance Bi-Te‐based thermoelectric materials via suppression of minority carrier transport[J]. Advanced Materials, 2021, 33.47: 2005931. [111] Mingxin B, Zhiheng X, Xiaobin T, et al. Solution-based 3D printed thermoelectric composite for custom-shaped thermoelectric generator applications[J]. Journal of Alloys and Compounds, 2024, 976: 173202. [112] Sining W, Yu X, Dudi R, et al. Enhancing thermoelectric performance of BiSbSe3 through improving carrier mobility via percolating carrier transports[J]. Journal of Alloys and Compounds, 2020, 836: 155473. [113] 巴倩, 刘志愿, 李周, 等. Bi2Te3基材料热电性能优化策略[J/OL]. 材料导报, 2025, 39(15): 24050140. [114] 高文博, 刘吉星, 张胜楠, 等. GeTe基热电材料的研究进展[J]. 功能材料, 2023, 54(01): 1079-1091. [115] X. S, L. C, C. U. Recent advances in high-performance bulk thermoelectric materials[J]. International Materials Reviews, 2016, 61.6: 379-415. [116] A. B, D.G. W. Review of electronic transport models for thermoelectric materials[J]. Superlattices and Microstructures, 2008, 44.1: 1-36. [117] Lei Y, Zhi-Gang C, Matthew S. D, et al. High performance thermoelectric materials: progress and their applications[J]. Advanced Energy Materials, 2018, 8.6: 1701797. [118] 庞慧梅, 王华才. 碲化锡基热电材料的研究进展[J/OL]. 科学通报, 1-10. [119] 刘志愿, 管希成, 李周, 等. Bi2Te3基热电材料中的声子工程[J]. 硅酸盐学报, 2024, 52(01): 203-217. [120] Md. N H, Herman W, Nafarizal N, et al. Inorganic thermoelectric materials: A review[J]. International Journal of Energy Research, 2020, 44.8: 6170-6222. [121] Xiao Z, Li-Dong Z. Thermoelectric materials: Energy conversion between heat and electricity[J]. Journal of Materiomics, 2015, 1.2: 92-105. [122] 陈立东, 刘睿恒, 史迅. 热电材料与器件[M]. 北京: 科学出版社, 2018. [123] G. J S, Eric S. T. Complex thermoelectric materials[J]. Nature Materials, 2008, 7.2: 105-114. [124] Madhubanti M, Ashutosh S, Abhishek K. S. Recent advances in designing thermoelectric materials[J]. Journal of Materials Chemistry C, 2022, 10.35: 12524-12555. [125] Zohreh S, Stamatis Z, Boris C, et al. A review on recent developments of thermoelectric materials for room-temperature applications[J]. Sustainable Energy Technologies and Assessments, 2020, 37: 100604. [126] Arash M D, Mona Z, Jian H, et al. Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials[J]. Materials Science and Engineering: R: Reports, 2015, 97: 1-22. [127] Terry M. T. Thermoelectric phenomena, materials, and applications[J]. Annual Review of Materials Research, 2011, 41.1: 433-448. [128] Ioannis P, Klas T, Xavier C, et al. Thermoelectric materials and applications for energy harvesting power generation[J]. Science and Technology of Advanced Materials, 2018, 19.1: 836-862. [129] Dipak S. P, Rachayya R. A, Pramod V. W. Thermoelectric materials and heat exchangers for power generation-A review[J]. Renewable and Sustainable Energy Reviews, 2018, 95: 1-22. [130] Wei-Hsin C, Yi-Bin C. Geometry design for maximizing output power of segmented skutterudite thermoelectric generator by evolutionary computation[J]. Applied Energy, 2020, 274: 115296. [131] Samson S, Guiqiang L, Xudong Z, et al. Optimized high performance thermoelectric generator with combined segmented and asymmetrical legs under pulsed heat input power[J]. Journal of Power Sources, 2019, 428: 53-66. [132] Ya G, Zhichun L, Henan S, et al. Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm[J]. Energy, 2018, 147: 1060-1069. [133] Jinsheng X, Tianqi Y, Peng L, et al. Thermal design and management for performance optimization of solar thermoelectric generator[J]. Applied Energy, 2012, 93: 33-38. [134] Wei-Hsin C, Shih-Rong H, Yu-Li L. Performance analysis and optimum operation of a thermoelectric generator by Taguchi method[J]. Applied Energy, 2015, 158: 44-54. [135] Samson S, Guiqiang L, Xudong Z, et al. High performance and thermal stress analysis of a segmented annular thermoelectric generator[J]. Energy Conversion and Management, 2019, 184: 180-193. [136] Jing-Hui M, Xiao-Dong W, Wei-Hsin C. Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery[J]. Energy Conversion and Management, 2016, 120: 71-80. [137] Marcin B, Michał M, Stanisław G, et al. Analysis of the fins geometry of a hot-side heat exchanger on the performance parameters of a thermoelectric generation system[J]. Applied Thermal Engineering, 2017, 127: 1355-1363. [138] H.B. G, G.H. H, H.J. L, et al. Development of stove-powered thermoelectric generators: A review[J]. Applied Thermal Engineering, 2016, 96: 297-310. [139] Sevan K, Altug S, Z. F O, et al. Characterization of a thermoelectric generator at low temperatures[J]. Energy Conversion and Management, 2012, 62: 47-50. [140] Constantinos H, Elias K, Julius G. Designing high efficiency segmented thermoelectric generators[J]. Energy Conversion and Management, 2013, 66: 165-172. [141] Tingzhen M, Wei Y, Yongjia W, et al. Numerical analysis on the thermal behavior of a segmented thermoelectric generator[J]. International Journal of Hydrogen Energy, 2017, 42.5: 3521-3535. [142] Onyebuchi I I. Modelling and comprehensive analysis of TEGs with diverse variable leg geometry[J]. Energy, 2019, 180: 90-106. [143] Xue W, Yujie Z, Wenbin S, et al. Output and mechanical performance of thermoelectric generator under transient heat loads[J]. Renewable Energy, 2024, 222: 119872. [144] Manoj K, Dr. M H, Naveen U, et al. Genetic algorithm: Review and application[J]. International Journal of Information Technology and Knowledge Management, 2010, 2(2): 451-454. [145] Deepti G, Shabina G. An overview of methods maintaining diversity in genetic algorithms[J]. International Journal of Emerging Technology and Advanced Engineering, 2012, 2.5: 56-60. [146] 高培超, 王昊煜, 宋长青, 等. 多目标优化NSGA系列算法与地理决策: 原理、现状与展望[J]. 地球信息科学学报, 2023, 25(01): 25-39. [147] Shanu V, Millie P, Vaclav S. A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems[J]. IEEE access, 2021, 9: 57757-57791. [148] Haiping M, Yajing Z, Shengyi S, et al. A comprehensive survey on NSGA-II for multi-objective optimization and applications[J]. Artificial Intelligence Review, 2023, 56.12: 15217-15270. [149] Yusliza Y, Mohd S N, Azlan M Z. Overview of NSGA-II for optimizing machining process parameters[J]. Procedia Engineering, 2011, 15: 3978-3983. [150] 张露, 段云龙. 基于熵权-TOPSIS法的房地产开发项目质量评价研究[J]. 项目管理技术, 2015, 13(06): 14-18. [151] 杨丽英, 侯治, 林丽新. 基于熵权-TOPSIS法港口物流综合能力评价研究-以广西港口为例[J]. 物流工程与管理, 2023, 45(07): 18-21+29. [152] Aamir S, Ismail L. Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges[J]. Composites Part B: Engineering, 2021, 225: 109249. [153] S. T, A. P, C. M. Direct ink writing of energy materials[J]. Materials Advances, 2021, 2.2: 540-563. [154] Laura d, Maria-Pau G. Rheological characterisation of ceramic inks for 3D direct ink writing: A review[J]. Journal of the European Ceramic Society, 2021, 41.16: 18-33. [155] Jin Y, Shaozhuan H, Yew V L, et al. Direct-ink writing 3D printed energy storage devices: From material selectivity, design and optimization strategies to diverse applications[J]. Materials Today, 2022, 54: 110-152. [156] M. A. S. R. S., Alianna M, Neethu T. P, et al. Direct ink writing: a 3D printing technology for diverse materials[J]. Advanced Materials, 2022, 34.28: 2108855. [157] M. N H, Adolofo C, Gordon F. C. Predicting colloidal ink 3D printing behavior using simple piecewise Power Law constitutive model[J]. Journal of Materials Engineering and Performance, 2024, 1-10. [158] Yuanrui S, Ruijie H, Xudong Q, et al. Study on ink flow of silicone rubber for direct ink writing[J]. Journal of Applied Polymer Science, 2021, 138.33: 50819. [159] B. D. Inkjet printing ceramics: From drops to solid[J]. Journal of the European Ceramic Society, 2011, 31.14: 2543-2550. [160] Fredrick K, Beomjin K, Youngho E, et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks[J]. Nature Energy, 2018, 3.4: 301-309. [161] Wenlong X, Yong D, Qiufeng M. Fabrication of flexible thermoelectric composites by solution 3D printing technology[J]. Composites Communications, 2021, 28: 100944. [162] Ning S, Pengfei Z, Yuhui P, et al. 3D-printing of shape-controllable thermoelectric devices with enhanced output performance[J]. Energy, 2020, 195: 116892. [163] Tao Y, Zhen-Ming L, Peng P, et al. Performance analysis of a novel Two-stage automobile thermoelectric generator with the Temperature-dependent materials[J]. Applied Thermal Engineering, 2021, 195: 117249. [164] Xin B, Shuaihang H, Zhixin W, et al. Mechanical properties of thermoelectric generators[J]. Journal of Materials Science & Technology, 2023, 148: 64-74. [165] Samson S, Guiqiang L, Xudong Z, et al. Review of thermoelectric geometry and structure optimization for performance enhancement[J]. Applied Energy, 2020, 268: 115075. [166] Moo-Yeon L, Jae-Hyeong S, Ho-Seong L, et al. Power generation, efficiency and thermal stress of thermoelectric module with leg geometry, material, segmentation and two-stage arrangement[J]. Symmetry, 2020, 12.5: 786. [167] Wei-Hsin C, Chi-Ming W, Da-Sheng L, et al. Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins[J]. Applied Energy, 2022, 314: 118995. [168] Aminu Y, Nevra B, Hasan T, et al. Multi-objective optimization of concentrated Photovoltaic-Thermoelectric hybrid system via non-dominated sorting genetic algorithm (NSGA II)[J]. Energy Conversion and Management, 2021, 236: 114065. [169] Yongjia W, Tingzhen M, Xiaohua L, et al. Numerical simulations on the temperature gradient and thermal stress of a thermoelectric power generator[J]. Energy Conversion and Management, 2014, 88: 915-927. [170] Aminu Y, Nevra B, Abdullahi A. I, et al. Geometric optimization of thermoelectric generator using genetic algorithm considering contact resistance and Thomson effect[J]. International Journal of Energy Research, 2021, 45.6: 9382-9395. [171] Zhongliang O, Dawen L. Design of segmented high-performance thermoelectric generators with cost in consideration. Applied Energy, 2018, 221: 112-121. [172] Omid M, Mohammad R M, Alibakhsh K, et al. Exergy analysis in combined heat and power systems: A review[J]. Energy Conversion and Management, 2020, 226: 113467. [173] S.R. P, A.K. P, V.V. T, et al. Energy and exergy analysis of typical renewable energy systems[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 105-123. [174] Man-Wen T, Leonardus W M, Hazim M, et al. A comprehensive energy efficiency study of segmented annular thermoelectric generator; thermal, exergetic and economic analysis[J]. Applied Thermal Engineering, 2020, 181: 115996. [175] Henan S, Sergio U G, Wei L, et al. Structure optimization and exergy analysis of a two-stage TEC with two different connections[J]. Energy, 2019, 180: 175-191. [176] Yulong Z, Wenjie L, Xianglin Z, et al. Energy and exergy analysis of a thermoelectric generator system for automotive exhaust waste heat recovery[J]. Applied Thermal Engineering, 2024, 239: 122180. [177] B.Y. O, H. L. Exergetic analysis of a solar thermoelectric generator[J]. Energy, 2015, 91: 84-90. [178] Hakan C. Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 488-492. [179] Cong L, Qin Z, Zhufeng Z, et al. Potential evaluation of flexible annular thermoelectric generator in photovoltaic system performance improvement: Energy and exergy perspectives[J]. Energy Conversion and Management, 2021, 247: 114711. [180] Xingguo C, Yuewu H, Zhuo C. Energy and exergy analysis of an integrated photovoltaic module and two-stage thermoelectric generator system[J]. Applied Thermal Engineering, 2022, 212: 118605. [181] Chika C. M, Kevwe A. E, Chigbo A. M. Performance optimization and thermodynamic analysis of irreversibility in a contemporary solar thermoelectric generator[J]. Renewable Energy, 2021, 168: 1189-1206. [182] S.C. K, S. M. The influence of Thomson effect in the energy and exergy efficiency of an annular thermoelectric generator[J]. Energy Conversion and Management, 2015, 103: 200-207. [183] Ravita L, S.C. K. Thermodynamic analysis of thermoelectric generator including influence of Thomson effect and leg geometry configuration[J]. Energy Conversion and Management, 2017, 144: 388-398. [184] Zhengwei F, Yao L, Xun C, et al. Research on fatigue of TSV-Cu under thermal and vibration coupled load based on numerical analysis[J]. Microelectronics Reliability, 2020, 106: 113590. [185] W. S, R. S, G. Y, et al. Thermoelectric module design to improve lifetime and output power density[J]. Materials Today Physics, 2021, 18: 100391. [186] M. E, Y. G, R. H, et al. Phase diagrams of binary alloys under pressure[J]. Journal of Alloys and Compounds, 2016, 687: 360-369. [187] Nagaraj M. C, Pambannan P, M.K. S. Deformation mechanisms and texture evolution of in-situ magnesium matrix composites containing polymer derived SiCNO dispersoids during hot compression[J]. Materials Science and Engineering: A, 2018, 720: 49-59. [188] Zhen T, Lu W, Yunfei X, et al. Strength-improved Al65Cu16.5Ti18.5 amorphous/crystalline alloy synthesized by spark plasma sintering[J]. Materials Science and Engineering: A, 2015, 642: 377-380. [189] Seok-Hyun Y. Effect of Dy on the dielectric nonlinear behavior of Mn and V-doped BaTiO3 multilayer ceramic capacitors[J]. Journal of Materials Research, 2015, 30.16: 2447-2455. [190] Mohamad D, Luc M. Some remarks on the nonlinear Schrödinger equation with fractional dissipation[J]. Journal of Mathematical Physics, 2016, 57.10: 101502. [191] I. S, A. J, L. T, et al. Investigation of electroless deposition of cobalt films by EQCM in the presence of different amines[J]. Materials Science and Engineering: B, 2019, 241: 9-12. [192] Jhonathan P. R, Devendra S, David C, et al. Stretchable helical architecture inorganic-organic hetero thermoelectric generator[J]. Nano Energy, 2016, 30: 691-699. [193] Ahmet Z. S, Bekir S. Y. The thermoelement as thermoelectric power generator: Effect of leg geometry on the efficiency and power generation[J]. Energy Conversion and Management, 2013, 65: 26-32. [194] ALkhadher K, Ahmed E, Said Y, et al. Performance comparison of TEGs for diverse variable leg geometry with the same leg volume[J]. Energy, 2021, 224: 119967. [195] 杨世铭, 陶文铨. 传热学 (第四版)[M]. 北京: 高等教育出版社, 2006. [196] Massoud K. Heat transfer physics[M]. Cambridge University Press, 2014. [197] K. Qiu, A.C.S. H. Development of a thermoelectric self-powered residential heating system[J]. Journal of Power Sources, 2008, 180.2: 884-889. [198] Samson S, Guiqiang L, Qindong X, et al. Transient and non-uniform heat flux effect on solar thermoelectric generator with phase change material[J]. Applied Thermal Engineering, 2020, 173: 115206. [199] Go-Eun L, Il-Ho K, Young S L, et al. Preparation and thermoelectric properties of Bi2Te3-Bi2Se3 solid solutions[J]. Journal of the Korean Physical Society, 2014, 64: 1416-1420. [200] Nafiseh B, Seyed A S, Abolfazl B, et al. Effects of synthesis parameters and thickness on thermoelectric properties of Bi2Te3 fabricated using mechanical alloying and spark plasma sintering[J]. Journal of Electronic Materials, 2021, 50: 1331-1339. [201] Xuedi Z, Jin C, Han Z, et al. Enhanced thermoelectric performance of 3D-printed Bi2Te3-based materials via adding Te/Se. Journal of Materiomics, 2023, 9.2: 328-337.
﹀
|
中图分类号: |
TL99
|
馆藏号: |
2025-006-0252
|
开放日期: |
2025-10-04
|