- 无标题文档

中文题名:

 战场环境下无人机集群任务协同技术研究    

姓名:

 马婷钰    

学号:

 SX2103133    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081100    

学科名称:

 工学 - 控制科学与工程    

学生类型:

 硕士    

学位:

 工学硕士    

入学年份:

 2021    

学校:

 南京航空航天大学    

院系:

 自动化学院    

专业:

 控制科学与工程    

研究方向:

 先进飞行控制技术    

第一导师姓名:

 江驹    

第一导师单位:

 自动化学院    

完成日期:

 2024-04-13    

答辩日期:

 2024-06-06    

外文题名:

 

Research on Task Collaboration Technology of Unmanned Aerial Vehicle Swarm in Battlefield Environments

    

中文关键词:

 无人机集群 ; 协同搜索 ; 协同打击 ; 任务分配 ; 航迹规划     

外文关键词:

 UAV swarms ; collaborative search ; collaborative strike ; task allocation ; trajectory planning     

中文摘要:

随着科学技术的进步以及作战理论的发展,无人机集群逐渐走进现代战场,成为决定战争胜负的核心力量。为了充分发挥无人机集群的优势,需要设计科学、高效的任务协同技术,为其提供行之有效的任务规划和决策方法。本文以无人机集群协同作战为问题背景,研究了战场环境下协同目标搜索、协同任务分配以及协同航迹规划三项关键技术,主要内容如下:

建立考虑机动性能约束的集群运动模型及集群通信拓扑结构。采用数字高程模型建立初始地形环境,并通过分析不同威胁源的特点建立相应的数学模型。在此基础上,将初始地形环境与威胁等效模型进行融合,得到等效数字地图,为后续的研究奠定基础。

为实现无人机集群高效且精准的多目标搜索,考虑集群成员中探测范围广的高空无人机和机动能力强的低空无人机,提出一种异构无人机集群协同目标搜索方法。针对高空无人机区域搜索任务,采用基于数字信息素的区域搜索算法,以信息素浓度和区域覆盖率为目标,通过设计信息素的更新规则,避免了部分区域的重复搜索。针对低空无人机精准搜索任务,采用基于改进狼群算法的精准搜索算法,通过自适应参数调整和差分进化方法改进传统狼群算法步长固定和易陷入局部最优的问题,进一步提高搜索精度和搜索效率。仿真结果表明所提出的方法能够有效完成搜索任务,改善整体搜索性能。

为解决无人机集群协同打击任务分配问题,考虑集群航迹代价、武器成本等关键指标,建立无人机集群协同打击任务分配优化模型,并采用切面地形跟随法估算战场环境的三维航程。针对传统单目标优化方法易受主观偏好影响的问题,提出一种多目标离散狼群算法。该算法采用Pareto非支配排序构建精英集,在生成初始种群时融入反向学习策略以改善初始种群质量,在离散空间下对狼群智能行为机制重新设计以提升算法的寻优能力。仿真结果表明所提出的方法在保持Pareto最优解多样性的同时具有较好的收敛性能,能够为任务提供多样化分配方案。

为满足战场环境中集群协同打击目标的要求,实现打击效能最大化,考虑无人机自身性能约束及多机时空协同关系,建立无人机集群协同打击航迹规划优化模型。引入共同进化思想,提出一种多目标狼群共同进化算法。每架无人机独立地采用多目标狼群算法进行航迹规划,通过协同性系数排序选择代表个体进行信息交互,从而实现集群时空协同。在生成航迹点之后,采用B样条插值算法进行航迹平滑,使得最终生成的航迹满足实际飞行要求。仿真结果表明所提出的方法能够有效满足无人机集群协同航迹规划的约束,得到多组满足不同性能要求的结果。

在上述研究的基础上,设计并开发集成目标搜索、对地打击两种任务的无人机集群协同作战仿真系统,实现具备参数调整和仿真过程可视化功能的人机交互界面,为决策者提供一定参考支持,以合理配置战争资源,实现更高的作战效能。

外文摘要:

With the advancement of science and technology and the upgrading of combat theory, UAV swarms have gradually entered modern battlefields and become the core force determining the outcome of wars. In order to fully leverage the advantages of UAV swarms, it is necessary to design scientific and efficient task collaboration technologies to provide an effective set of task planning and decision-making methods for UAV swarm systems. This paper studies three key technologies in collaborative target search, collaborative task allocation, and collaborative trajectory planning for UAV swarm operations in complex battlefield environments. The main research contents are as follows:

A swarm motion model considering maneuverability constraints and swarm communication topology structure is established. A digital elevation model is used to create the initial terrain environment, and corresponding mathematical models are established by analyzing the characteristics of different threat sources. On this basis, the initial terrain environment and the threat equivalent model are fused to obtain an equivalent digital map, laying the foundation for subsequent research.

To efficiently and accurately achieve multi-target search with a UAV swarm, this paper proposes a novel cooperative target search method for heterogeneous UAV swarm. This method takes into consideration high-altitude UAVs with wide detection ranges and low-altitude UAVs with strong maneuverability within the swarm. For the regional search tasks of high-altitude UAVs, a regional search algorithm based on digital pheromones is proposed. This algorithm uses pheromone concentration and region coverage as objectives and designs pheromone update rules to avoid repeated searches in certain areas. For accurate search tasks of low-altitude UAVs, an improved precise search algorithm based on the wolf pack algorithm is proposed. By using adaptive parameter adjustment and differential evolution methods, issues with the traditional wolf pack algorithm, such as fixed step size and susceptibility to local optima, are addressed, further enhancing search accuracy and efficiency. Simulation results demonstrate that the proposed model and method can effectively complete the search task and improve the overall search performance.

In response to the problem of task allocation for UAV swarm collaborative strikes, key indicators such as swarm trajectory cost and weapon cost are taken into consideration. An optimization model for cooperative strike task allocation in UAV swarms is established, with the facet terrain following method used for estimating the three-dimensional flight path in the battlefield environment. Traditional single-objective optimization methods are susceptible to limitations of subjective preferences. To address this, a multi-objective discrete wolf pack algorithm is proposed. This algorithm utilizes Pareto non-dominance sorting to construct an elite set, incorporates a reverse learning strategy to enhance the quality of the initial population, and redesigns the intelligent behavior mechanism of the wolf pack in discrete space to boost the algorithm's optimization capabilities. Simulation results demonstrate that the proposed method maintains the diversity of Pareto optimal solutions while exhibiting good convergence performance, thereby providing diversified allocation schemes for tasks.

In order to meet the requirements of cooperative target strikes in battlefield environments and maximize strike efficiency, considering the performance constraints of the UAVs themselves and the spatio-temporal coordination relationships among multiple UAVs, an optimization model for cooperative strike trajectory planning of UAV swarms is established. The concept of co-evolution is introduced, and a multi-objective wolf pack co-evolution algorithm is proposed. Each UAV independently uses the multi-objective wolf pack algorithm for trajectory planning, and selects representative individuals for information interaction through cooperative coefficient sorting, thereby achieving spatio-temporal coordination of the swarm. After generating the trajectory points, the B-spline interpolation algorithm is used for trajectory smoothing, so that the final generated trajectory meets the actual flight requirements. Simulation results show that the proposed method can effectively meet the constraints of cooperative trajectory planning of UAV swarms, and obtain multiple sets of results that meet different performance requirements.

Based on the aforementioned research, a UAV swarm cooperative combat simulation system that integrates target search and ground strike missions is designed and developed. This system features a human-machine interface with capabilities for parameter adjustment and simulation process visualization, providing decision-makers with reference support to allocate war resources rationally and achieve higher combat efficiency.

参考文献:

[1] Telli K, Kraa O, Himeur Y, et al. A comprehensive review of recent research trends on unmanned aerial vehicles (UAVs)[J]. Systems, 2023, 11(8): 400-448.

[2] Li P, Mao P, Geng Q, et al. Research status and trend of UAV swarm technology[J]. Aero Weaponry, 2020, 27(4): 25-32.

[3] Shao R, Tao R, Liu Y, et al. UAV cooperative search in dynamic environment based on hybrid-layered APF[J]. EURASIP Journal on Advances in Signal Processing, 2021, 2021(1): 1-18.

[4] 张笋, 朱昱, 代李菟, 等. 军用无人机技术发展历程、现状及未来应用研究[J]. 舰船电子工程, 2021, 41(06): 9-13.

[5] 赵林, 张宇飞, 姚明旿, 等. 无人机集群协同技术发展与展望[J]. 无线电工程, 2021, 51(08): 823-828.

[6] Zhou Y, Rao B, Wang W. UAV swarm intelligence: recent advances and future trends[J]. IEEE Access, 2020, 8: 183856-183878.

[7] Tang J, Duan H, Lao S. Swarm intelligence algorithms for multiple unmanned aerial vehicles collaboration: a comprehensive review[J]. Artificial Intelligence Review, 2023, 56(5): 4295-4327.

[8] 朱超磊, 金钰, 王靖娴, 等. 2022年国外军用无人机装备技术发展综述[J]. 战术导弹技术, 2023(03): 11-25.

[9] 王玉杰, 邓小龙, 高显忠. 自杀式无人机系统与作战运用现状[J]. 国防科技, 2023, 44(02): 90-98.

[10] Huda S M A, Moh S. Deep reinforcement learning-based computation offloading in UAV swarm-enabled edge computing for surveillance applications[J]. IEEE Access, 2023, 11: 68269-68285.

[11] Kong L, Liu Z, Pang L, et al. Research on UAV swarm operations[C]//International Conference on Man-Machine-Environment System Engineering. Singapore: Springer Nature Singapore, 2022: 533-538.

[12] Pan Z, Xia Y, Sun Z, et al. Multilayer self-organized aggregation control for large scale unmanned aerial vehicle swarms[J]. International Journal of Robust and Nonlinear Control, 2023, 33(10): 5420-5436.

[13] 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(04): 20-45.

[14] 刘雷, 刘大卫, 王晓光, 等. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报, 2022, 43(S1): 4-20.

[15] 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1): 4-14.

[16] Javaid S, Saeed N, Qadir Z, et al. Communication and control in collaborative UAVs: recent advances and future trends[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(06): 5719-5739.

[17] 李磊, 邱少雄, 徐红丽. 基于时间地理的多UUV协同搜索移动目标发现概率模型[J]. 无人系统技术, 2023, 6(04): 31-39.

[18] Gui J, Yu T, Deng B, et al. Decentralized multi-UAV cooperative exploration using dynamic centroid-based area partition[J]. Drones, 2023, 7(6): 337-352.

[19] Liang Y, Yang Y, Zhao Y. Multi-area complete coverage with fixed-wing UAV swarms based on modified ant colony algorithm[C]//2022 IEEE International Conference on Unmanned Systems (ICUS). IEEE, 2022: 732-737.

[20] 高炳霞, 张波涛, 王坚, 等. 一种基于概率地图的移动机器人最优期望时间目标搜索[J]. 控制与决策, 2022, 37(04): 944-952.

[21] Zheng J, Ding M, Sun L, et al. Distributed stochastic algorithm based on enhanced genetic algorithm for path planning of multi-UAV cooperative area search[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(08): 8290-8303.

[22] Luo D, Li S, Shao J, et al. Pigeon-inspired optimization-based cooperative target searching for multi-UAV in uncertain environment[J]. International Journal of Bio-Inspired Computation, 2022, 19(3): 158-168.

[23] Liu Y, Wang M, Su Z, et al. Multi-AUVs cooperative target search based on autonomous cooperative search earning algorithm[J]. Journal of Marine Science and Engineering, 2020, 8(11): 843-866.

[24] Wu A, Yang R, Liang X, et al. Cooperative search algorithm based on pheromone decision for UAV swarm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 814-827.

[25] 刘云昊, 邓亦敏, 段海滨, 等. 基于飞蛾信息素寻偶机制的无人机集群协同搜索[J]. 国防科技大学学报, 2022, 44(04): 22-31.

[26] Duan H, Zhao J, Deng Y, et al. Dynamic discrete pigeon-inspired optimization for multi-UAV cooperative search-attack mission planning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 57(1): 706-720.

[27] 黄杰, 孙伟, 高渝. 双属性概率图优化的无人机集群协同目标搜索[J]. 系统工程与电子技术, 2020, 42(01): 118-127.

[28] 文超, 董文瀚, 解武杰, 等. 基于回访机制的无人机集群分布式协同区域搜索方法[J]. 航空学报, 2023, 44(11): 253-270.

[29] 沈骁, 赵彤洲. 基于DDQN的无人机区域覆盖路径规划策略[J]. 电子测量技术, 2023, 46(14): 30-36.

[30] Shen G, Lei L, Zhang X, et al. Multi-UAV cooperative search based on reinforcement learning with a digital twin driven training framework[J]. IEEE Transactions on Vehicular Technology, 2023, 72(07): 8354-8368.

[31] Xing D, Zhen Z, Zhou C, et al. Cooperative search of UAV swarm based on ant colony optimization with artificial potential field[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2019, 36(6): 912-918.

[32] 姚军, 李思捷, 罗德林, 等. 基于粒子群遗传算法的多无人机协同路径搜索[J]. 火力与指挥控制, 2021, 46(08): 59-63.

[33] Lu J, Jiang J, Han B, et al. Dynamic target search of UAV swarm based on improved pigeon-inspired optimization[C]//Proceedings of 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control. Singapore: Springer Nature Singapore, 2022: 361-371.

[34] 孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报, 2021, 42(08): 35-49.

[35] 李瑞琳, 崔巍, 冯彦翔, 等. 时间窗约束下的无人集群分布式任务分配算法[J]. 弹箭与制导学报, 2023, 43(03): 16-25.

[36] Bao K, Yi S, Zhang H, et al. Multi-unmanned aerial vehicle cooperative task allocation algorithm based on improved distributed cooperative auction[C]//International Conference on Autonomous Unmanned Systems. Singapore: Springer Nature Singapore, 2022: 1535-1543.

[37] Liu B, Deng M, Wu G, et al. Bottom-up mechanism and improved contract net protocol for dynamic task planning of heterogeneous earth observation resources[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(10): 6183-6196.

[38] 刘西. 复杂环境下多无人机对目标点的协同打击规划[D]. 南京: 南京航空航天大学, 2020.

[39] Pasha J, Elmi Z, Purkayastha S, et al. The drone scheduling problem: a systematic state-of-the-art review[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 14224-14247.

[40] 李华. 多无人机协同任务分配算法设计与实现[D]. 北京: 北京交通大学, 2023.

[41] 张哲, 吴剑, 何诚, 等. 复杂环境下多目标多无人机协同任务规划[J]. 兵器装备工程学报, 2020, 41(02): 123-128.

[42] 周同乐, 陈谋, 韩增亮, 等. 基于改进狼群算法的多无人机协同多目标分配[J]. 导航定位与授时, 2022, 9(05): 46-55.

[43] Li Y, Zhang S, Chen J, et al. Multi-UAV cooperative mission assignment algorithm based on ACO method[C]//2020 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2020: 304-308.

[44] Song Y, Xi Q, Xing X, et al. Multi-UAV cooperative multi-target allocation method based on differential evolutionary algorithm[C]//2020 39th Chinese Control Conference (CCC). IEEE, 2020: 1655-1660.

[45] Jiang Y, Wang D, Bai T, et al. Multi-UAV objective assignment using hungarian fusion genetic algorithm[J]. IEEE Access, 2022, 10: 43013-43021.

[46] 牛源, 崔志华, 白慧. 异构多无人机中的任务分配优化问题[J]. 小型微型计算机系统, 2023, 44(08): 1720-1727.

[47] Wang Y, Zhang L. Improved multi-objective particle swarm optimization algorithm based on area division with application in multi-UAV task assignment[J]. IEEE Access, 2023, 11: 123519-123530.

[48] Bai H, Fan T, Niu Y, et al. Multi-UAV cooperative trajectory planning based on many-objective evolutionary algorithm[J]. Complex System Modeling and Simulation, 2022, 2(2): 130-141.

[49] Blasi L, D'Amato E, Mattei M, et al. UAV path planning in 3D constrained environments based on layered essential visibility graphs[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 59(3): 2359-2375.

[50] Prasad N L, Ramkumar B. 3-D deployment and trajectory planning for relay based UAV assisted cooperative communication for emergency scenarios using Dijkstra's algorithm[J]. IEEE Transactions on Vehicular Technology, 2022, 72(4): 5049-5063.

[51] Zhang Z, Wu J, Dai J, et al. Optimal path planning with modified A-Star algorithm for stealth unmanned aerial vehicles in 3D network radar environment[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(1): 72-81.

[52] Yuan J, Liu Z, Lian Y, et al. Global optimization of UAV area coverage path planning based on good point set and genetic algorithm[J]. Aerospace, 2022, 9(2): 86-105.

[53] Sonny A, Yeduri S R, Cenkeramaddi L R. Autonomous UAV path planning using modified PSO for UAV-assisted wireless networks[J]. IEEE Access, 2023,11: 70353-70367.

[54] Orozco-Rosas U, Picos K, Pantrigo J J, et al. Mobile robot path planning using a QAPF learning algorithm for known and unknown environments[J]. IEEE Access, 2022, 10: 84648-84663.

[55] Zhou H, Zhang X, Li Y. Summary of path planning approaches of multiple UAVs[C]// Proceedings of 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control. Singapore: Springer Nature Singapore, 2022: 34-41.

[56] 胡嘉薇, 贾泽群, 孙延涛, 等. 多约束条件下多无人机协同任务规划问题分析及求解方法综述[J]. 计算机科学, 2023, 50(07): 176-193.

[57] Chen Z, Xia S, Li J. Serial strategy for rendezvous of multiple UAVs based on directional A* algorithm[J]. Control & Decision, 2019, 34(6)): 1169-1177.

[58] Chen Q, Xin H, Wang Y, et al. A rapid path planning method for multiple UAVs to cooperative strike[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1145-1153.

[59] 陈子豪, 李娟, 刘畅, 等. 时间约束下对地面目标协同攻击任务规划方法[J]. 系统工程与电子技术, 2023, 45(08): 2353-2360.

[60] 赵飞虎, 李哲, 王宁, 等. 面向战场的多无人机协同打击航迹规划[J]. 电光与控制, 2023, 30(09): 9-14.

[61] Liu Q, Zhang Y, Li M, et al. Multi-UAV path planning based on fusion of sparrow search algorithm and improved bioinspired neural network[J]. IEEE Access, 2021, 9: 124670-124681.

[62] Xu C, Xu M, Yin C. Optimized multi-UAV cooperative path planning under the complex confrontation environment[J]. Computer Communications, 2020, 162: 196-203.

[63] Bai H, Fan T, Niu Y, et al. Multi-UAV cooperative trajectory planning based on many-objective evolutionary algorithm[J]. Complex System Modeling and Simulation, 2022, 2(2): 130-141.

[64] 袁梦顺, 陈谋, 吴庆宪. 基于NSGA-III算法的多无人机协同航迹规划[J]. 吉林大学学报(信息科学版), 2021, 39(03): 295-302.

[65] Mu J, Zhang R, Cui Y, et al. UAV meets integrated sensing and communication: challenges and future directions[J]. IEEE Communications Magazine, 2023, 61(5): 62-67.

[66] Okolie C J, Smit J L. A systematic review and meta-analysis of digital elevation model (DEM) fusion: pre-processing, methods and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188: 1-29.

[67] 胡廷银. 面向复杂环境的无人机航迹规划研究[D]. 西安: 西安电子科技大学, 2022.

[68] 张哲. 隐身无人机快速突防航路规划技术研究[D]. 南昌: 南昌航空大学, 2021.

[69] Fu J, Sun G, Yao W, et al. On trajectory homotopy to explore and penetrate dynamically of multi-UAV[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 24008-24019.

[70] 凌文通, 倪建军, 陈颜, 等. 基于改进鸽群优化算法的多无人机目标搜索[J]. 计算机工程与科学, 2022, 44(03): 530-535.

[71] 吴傲, 杨任农, 梁晓龙, 等. 基于信息素决策的无人机集群协同搜索算法[J]. 北京航空航天大学学报, 2021, 47(04): 814-827.

[72] Wang Z, Zhang J. A task allocation algorithm for a swarm of unmanned aerial vehicles based on bionic wolf pack method[J]. Knowledge-Based Systems, 2022, 250: 109072-109084.

[73] 葛媛媛, 陈得宝, 邹锋. 多群多策略差分大规模多目标优化算法[J]. 控制与决策, 2022: 1-9.

[74] 陈明强, 李奇峰, 冯树娟, 等. 基于改进粒子群算法的无人机三维航迹规划[J]. 无线电工程, 2023, 53(02): 394-400.

[75] 张耀中, 赵雪芳, 丰文成. 基于改进蛙跳算法的多无人机协同任务分配研究[J]. 火力与指挥控制, 2023, 48(04): 52-58.

[76] Zhang R, Feng Y, Yang Y, et al. A deadlock-free hybrid estimation of distribution algorithm for cooperative multi-UAV task assignment with temporally coupled constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 59(03): 3329-3344.

[77] 杨晓辉, 邓福伟, 张钟炼, 等. 基于自适应 约束法考虑OLTC模糊控制的低碳配电网双层规划[J]. 电力系统保护与控制, 2023, 51(13): 1-11.

[78] Imene L, Sihem S, Okba K, et al. A third generation genetic algorithm NSGAIII for task scheduling in cloud computing[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(9): 7515-7529.

[79] 胡月. 有人/无人机协同作战任务分配与航迹规划研究[D]. 南京: 南京航空航天大学, 2020.

[80] Tian Y, Si L, Zhang X, et al. Local model-based Pareto front estimation for multi-objective optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53(1): 623-634.

[81] Cheraghi R, Jahangir M. Multi-objective optimization of a hybrid renewable energy system supplying a residential building using NSGA-II and MOPSO algorithms[J]. Energy Conversion and Management, 2023, 294: 117515-117535.

[82] Li W, Wang G, Gandomi A. A survey of learning-based intelligent optimization algorithms[J]. Archives of Computational Methods in Engineering, 2021, 28: 3781-3799.

[83] Hu L, Yi L, Nan Y, et al. Combat situation suppression of multiple UAVs based on spatiotemporal cooperative path planning[J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1191-1210.

[84] Bao Q, Wang M, Dai G, et al. A dual-population based bidirectional coevolution algorithm for constrained multi-objective optimization problems[J]. Expert Systems with Applications, 2023, 215: 119258-119274.

[85] Xu L, Cao M, Song B. A new approach to smooth path planning of mobile robot based on quartic Bezier transition curve and improved PSO algorithm[J]. Neurocomputing, 2022, 473: 98-106.

[86] Liu M, Zhang H, Yang J, et al. A path planning algorithm for three-dimensional collision avoidance based on potential field and B-spline boundary curve[J]. Aerospace Science and Technology, 2023: 108763-108777.

[87] 陈帅华, 赵洋. 基于改进人工蜂群算法的HOV三维路径规划[J]. 舰船科学技术, 2023, 45(11): 76-82.

[88] Yuan D, Wang Y, Bai J. Multi-UAV route re-generation method based on trajectory data[J]. Journal of Shanghai Jiaotong University (Science), 2022, 27(6): 806-816.

中图分类号:

 V249    

馆藏号:

 2024-003-0477    

开放日期:

 2024-12-04    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式