- 无标题文档

中文题名:

 具有分形槽道毛细芯的平板热管的 设计与传热性能研究    

姓名:

 刘丰睿    

学号:

 SZ2015103    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位:

 专业学位硕士    

入学年份:

 2020    

学校:

 南京航空航天大学    

院系:

 航天学院    

专业:

 机械(专业学位)    

研究方向:

 航天热控技术    

第一导师姓名:

 李金旺    

第一导师单位:

 航天学院    

完成日期:

 2023-03-29    

答辩日期:

 2023-03-19    

外文题名:

 

Design and heat transfer performance of flat heat pipe with fractal channel capillary core

    

中文关键词:

 平板热管 ; 分形结构 ; 数值模拟 ; 传热与传质 ; 相变传热     

外文关键词:

 Flat heat pipe ; fractal structure ; numerical simulation ; heat and mass transfer ; phase-transformation     

中文摘要:

随着航空航天技术的发展,许多应用于航空航天设备的精密电子器件往高度集成化发展,随之而来的是高热流密度等问题,此外,航空航天设备热控系统需要额外满足能适应复杂环境等要求,这也给航天热控技术领域提出了新的挑战。热管作为一种高效的传热结构,被越来越多地应用于航空航天散热领域。

本文基于叶脉传输路径,设计了一种具有分形槽道毛细芯的平板热管,分形槽道毛细芯具有更快的抽吸速率和更高的抽吸质量,以此提高热管的总体性能。通过仿真结合实验的方法研究热管的传热性能以及各参数对其总体性能的影响,同时通过可视化研究探究优化槽道抽吸性能的方法。本文主要内容包括:

在仿真研究方面,建立了平板热管的三维模型和理论计算模型,验证了具有分形槽道毛细芯的平板热管的可行性,仿真结果表明:槽道结构、分形角度和蒸气腔高度均会对热管的性能产生一定的影响,且存在某个参数值使得热管性能达到最佳。

在实验研究方面,设计并制作了实验件,搭建了试验平台,探究了不同加热功率对热管性能的影响,综合研究结果优化并设计了新的实验件,优化后的实验件具有更小的槽道长度和宽度,探究了不同加热功率、充液率和倾斜角度对优化后的热管的影响。

在可视化研究方面,研究了冷凝方式对工质冷凝过程的影响,研究了热管在不同条件下的工质流动情况以及每一级槽道的抽吸情况,可视化实验结果用于优化各级槽道的尺寸。

外文摘要:

With the development of aerospace technology, many precision electronic devices used in aerospace equipment are becoming highly integrated, which leads to high heat flux and other problems. In addition, the thermal control system of aerospace equipment needs to meet additional requirements such as being able to adapt to complex environment, which also poses new challenges to the field of aerospace thermal control technology. As a kind of efficient heat transfer structure, heat pipe is used more and more in the field of aviation air cooling.

Based on the vein transmission path, a flat heat pipe with a fractal channel capillary core is designed in this paper. The fractal channel capillary core has a faster suction rate and higher suction mass, so as to improve the overall performance of the heat pipe. The heat transfer performance of the heat pipe and the influence of various parameters on its overall performance were studied through simulation and experiment. Meanwhile, the method of optimizing the suction performance of the channel was explored through visualization research. The main contents of this paper include:

(1) In the aspect of simulation, the three-dimensional model and theoretical calculation model of flat heat pipe are established to verify the feasibility of flat heat pipe with fractal groove capillary core. The simulation results show that the groove structure, fractal Angle and vapor chamber height all have a certain influence on the performance of heat pipe, and there is a certain parameter value that makes the performance of heat pipe reach the best.

(2) In terms of experimental research, two versions of experimental pieces were designed and made, and a test platform was built to explore the influence of different heating power on the performance of heat pipes. Based on the research results, a new experimental piece was optimized and designed. The new experimental piece has a smaller channel length and width, and the influence of different heating power, liquid filling rate and tilt Angle on the optimized heat pipes was explored.

(3) In terms of visualization research, the impact of condensation methods on the refrigerant condensation process was studied, and the refrigerant flow in heat pipes under different conditions and the suction of each stage of the channel were studied. The visualization experimental results were used to optimize the size of each stage of the channel.

参考文献:

[1] 李广义, 张俊洪, 高键鑫. 大功率电力电子器件散热研究综述[J]. 兵器装备工程学报, 2020, 41(11): 8-14.

[2] Bandar Fadhl, Luiz C. Wrobel, Hussam Jouhara. Numerical modelling of the temperature distribution in a two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2013, 60(1-2): 122-131.

[3] 张晨阳. 热管数值模拟研究现状综述[J]. 西部皮革, 2020, 42(16): 70.

[4] Lelun Jiang, Yong Tang, Wei Zhou, et al. Design and fabrication of sintered wick for miniature cylindrical heat pipe[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 292-301.

[5] 李洪斌, 杨先. 热超导体——热管技术的原理及应用[J]. 现代物理知识, 2009, 21(3): 17-18.

[6] 陈金建, 汪双凤. 平板热管散热技术研究进展[J]. 化工进展, 2009, 28(12): 2105-2108.

[7] 刘腾庆, 闫文韬, 杨鑫, 等. 强化平板热管传热性能的研究进展[J].化工学报, 2021, 72(11): 5468-5480.

[8] 罗志平. 毛细抽吸两相流体回路的动态仿真及3D演示[D]. 重庆大学, 2001.

[9] 刘志春, 刘伟, 杨金国. CPL毛细芯冷凝器的数值模拟研究[J]. 工程热物理学报, 2007, (S2): 81-84.

[10] 孙世梅, 张红. 高温热管换热器局部强化传热数值模拟[J]. 石油化工设备, 2007, 235(6): 55-58.

[11] Asghar Alizadehdakhel, Masoud Rahimi, Ammar Abdulaziz Alsairafi. CFD modeling of flow and heat transfer in a thermosyphon[J]. International Communications in Heat and Mass Transfer, 2010, 37(3): 312-318.

[12] A. Parvareh, M. Rahimi, A. Alizadehdakhel, et al. CFD and ERT investigations on two-phase flow regimes in vertical and horizontal tubes[J]. International Communications in Heat and Mass Transfer, 2010, 37(3): 304-311.

[13] Amir Motamed Dashliborun, Mohsen Hamidipour, Faïçal Larachi. Hydrodynamics of inclined packed beds under flow modulation‐CFD simulation and experimental validation[J]. Aiche Journal, 2017, 63(9): 4161-4176.

[14] 闫登强. 异型热管换热器强化传热及结构优化数值模拟研究[D]. 南华大学, 2012.

[15] 杨郁满. 热管换热器内温度场和流场数值模拟及分析[D]. 辽宁石油化工大学, 2014.

[16] Bandar Fadhl, Luiz C. Wrobel, Hussam Jouhara. CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a[J]. Applied Thermal Engineering, 2015, 78: 482-490.

[17] Sebastian Rieks, Eugeny Y. Kenig. Modelling and numerical simulation of coupled transport phenomena with phase change: Mixture evaporation from a rectangular capillary[J]. Chemical Engineering Science, 2018, 181: 173-185.

[18] 卿倩, 张登春, 陈大伟, 等. 重力热管内部相变传热过程的数值模拟[J]. 矿业工程研究, 2019, 34(4): 57-64.

[19] 王一飞. 微型平板热管传热与流动特性仿真分析[D]. 哈尔滨工业大学, 2020.

[20] 刘彬, 胡子强, 李夔宁, 等. 基于大平板热管的电池热管理实验及仿真[J]. 储能科学与技术, 2021, 10(4): 1364-1373.

[21] 陈玉. 环路热管蒸发器和储液器可视化及仿真研究[D]. 中国科学院大学(中国科学院上海技术物理研究所), 2021.

[22] Zhang Yixue, Luan Tao, Jiang Haolin, et al. Visualization study on start-up characteristics of a loop heat pipe with a carbon fiber capillary wick[J]. International Journal of Heat and Mass Transfer, 2021, 169: 120940.

[23] Taoufik Brahim, Abdelmajid Jemni. CFD analysis of hotspots copper metal foam flat heat pipe for electronic cooling applications[J]. International Journal of Thermal Sciences, 2021, 159: 106583.

[24] 王迅, 胡启帆. 平板型环路热管启动特性数值模拟[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(6): 645-650.

[25] 曹双俊. 新型重力热管换热器性能实验及数值研究[D]. 中南大学, 2011.

[26] 胡冕, 丁晓红. 热管滚珠丝杠热性能仿真和实验[J]. 中国机械工程, 2020, 31(20): 2445-2453.

[27] 曹小林, 曹双俊, 曾伟, 等. 新型重力热管换热器传热性能的实验研究[J]. 中南大学学报(自然科学版), 2012, 43(6): 2419-2423.

[28] 卫光仁, 柴宝华, 魏国锋, 等. 干道式高温热管的传热性能试验研究[J]. 原子能科学技术, 2014, 48(3): 447-452.

[29] 郭晓娴, 柯国土, 柴宝华. 干道式高温热管工艺失效模式影响及危害性分析[J]. 质量与可靠性, 2017, 189(3): 17-20.

[30] 周文杰. 压扁型超薄热管制造方法及传热性能研究[D]. 华南理工大学, 2019.

[31] 陈富财, 钱益昊, 罗英, 等. 倾角对重力热管携带极限影响的实验研究[J]. 核动力工程, 2020, 41(S2): 21-26.

[32] 钦少聪. 二氧化碳重力热管的数值模拟与实验研究[D]. 浙江大学, 2020.

[33] Huang Jiale, Xiang Jianhua, Chu Xuyang, et al. Thermal performance of flexible branch heat pipe[J]. Applied Thermal Engineering, 2021, 186: 116532.

[34] Watanabe Noriyuki, Mizutani Takuji, Nagano Hosei. High-performance energy-saving miniature loop heat pipe for cooling compact power semiconductors[J]. Energy Conversion and Management, 2021, 236: 114081.

[35] Sun Hongli, Duan Mengfan, Wu Yifan, et al. Thermal performance investigation of a novel heating terminal integrated with flat heat pipe and heat transfer enhancement[J]. Energy, 2021, 236: 121411.

[36] 宋吉. 热源位置对热管内工质流态与传热性能的影响机制研究[J]. 制冷技术, 2021, 41(6): 51-56.

[37] 郭浩. 热管内气液相分离及传热性能实验研究[D]. 华北电力大学(北京), 2021.

[38] 杨茂飞, 李金旺, 周刘伟. 亲水改性超薄平板热管传热性能[J]. 化工进展, 2022: 1-9. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.16085/j.issn.1000-6613.2022-0695.

[39] Xu Bowen, Li Jinwang, Lu Ningxiang, et al. Experimental study on heat transfer characteristics of high-temperature heat pipe[J]. Thermal Science, 2023, 27(1A): 1-11.

[40] 包云皓. 分流-汇流型结构脉动热管传热特性研究[D]. 中国矿业大学, 2022.

[41] 钟国强, 徐润, 柳尚, 等. 基于太阳能-热管的循环流体加热桥面融雪系统试验研究[J]. 公路, 2021, (4): 315-320.

[42] 路膺祚, 鲍玲玲, 罗景辉, 等. 矿井回风余热回收用可变导热管的换热分析[J]. 煤矿安全, 2021, 52(1): 220-225, 231.

[43] 陶汉中, 张红, 庄骏. 槽道吸液芯热管的研究进展[J]. 化工进展, 2010, 29(3): 403-412.

[44] 宣益民, 钱吉裕, 李强. CPL复合毛细芯流动性能及工质特性分析[J]. 工程热物理学报, 2003, (6): 1007-1009.

[45] 李强, 周海迎, 宣益民. 复合结构毛细蒸发器传热特性研究[J]. 工程热物理学报, 2008, (1): 148-150.

[46] 柏立战, 林贵平. 环路热管复合芯传热与流动特性分析[J]. 北京航空航天大学学报, 2009, 35(12): 1446-1450.

[47] 周丽. 均温板毛细芯制作及传热性能的实验研究[D]. 江苏科技大学, 2018.

[48] 陈曦, 林毅, 孙琦, 等. 3D打印钛合金毛细芯流动和传热的数值模拟[J]. 真空与低温, 2019, 25(2): 94-98.

[49] 张鹏. 功能梯度毛细芯及其环路热管实验研究[D]. 山东大学, 2019.

[50] 刘峻瑜. 适用于平板型环路热管的碳纤维毛细芯改性及性能研究[D]. 山东大学, 2019.

[51] 丹聃, 郭少龙, 张扬军, 等. 平板热管多孔毛细芯等效导热系数预测[J]. 中国科学:技术科学, 2021, 51(01): 55-64.

[52] Liu Chao, Hu Dinghua, Li Qiang, et al. Vapor chamber with two-layer liquid supply evaporator wick for high-heat-flux devices[J]. Applied Thermal Engineering, 2021, 190: 116803.

[53] 陆宁香, 李金旺, 杨茂飞. 变孔隙毛细芯平板热管性能[J]. 化工进展, 2022, 41(12): 1-13.

[54] Lu Ningxiang, Li Jinwang, Liu Fengrui. Experimental Study on Gradient Pore Size Capillary Wicks[J]. Heat Transfer Research, 2022, 53(7): 57-75.

[55] 胡卓焕, 罗婷, 许佳寅, 等. 毛细芯蒸汽槽道孔径对环路热管(LHP)传热性能影响研究[J]. 热能动力工程, 2022, 37(5): 86-92.

[56] 董涛, 陈运生, 杨朝初, 等. 仿蜂巢分形微管道网络中的流动与换热[J]. 化工学报, 2005, (9): 1618-1625.

[57] 徐鹏. 树状分形分叉网络的输运特性[D]. 华中科技大学, 2008.

[58] 刘代伟. 多层分叉微通道散热器的水冷散热性能研究[D]. 电子科技大学, 2014.

[59] 陈伟. 基于Y-形单元分形吸液芯结构流动与传热性能研究[D]. 华南理工大学, 2015.

[60] Xu Shanglong, Li Yue, Hu Xinglong, et al. Characteristics of heat transfer and fluid flow in a fractal multilayer silicon microchannel[J]. International Communications in Heat and Mass Transfer, 2016, 71: 86-95.

[61] 彭毅. 基于植物叶片结构的仿生均热板研究[D]. 华南理工大学, 2015.

[62] 王力. 基于植物气孔与叶脉结构的吸液芯结构研究[D]. 华南理工大学, 2016.

[63] Jiaju Hong, Sheng Liu, Yuying Yan. Bionic Inspired Study of Heat Pipe from Plant Water Migration[J]. Energy Procedia, 2017, 110: 567-573.

[64] 田中轩. 叶脉仿生分形型均热板的优化设计及其传热性能研究[D]. 广东工业大学, 2018.

[65] 胡伟强. 带气液分离腔树状分型微通道热管性能研究[D]. 南昌大学, 2018.

[66] 胡伟强, 宋本哲, 王志强, 等. 带汽液分离腔的树状微通道热管运行性能研究[J]. 流体机械, 2018, 46(11): 68-73, 59.

[67] 赵雨亭, 王长宏, 黄浩东, 等. 仿生叶脉分形微结构表面的平板热管传热性能研究[J]. 热科学与技术, 2019, 18(6): 471-475.

[68] 赵雨亭. 超薄“Y”形槽道平板热管的设计及传热性能研究[D]. 广东工业大学, 2020.

[69] 李红传, 纪献兵, 徐进良. 仿生毛细芯平板热管性能研究[J]. 航空动力学报, 2017, 32(10): 2403-2409.

[70] 李小磊, 马晓雯, 常允乐, 等. 表面润湿性对微通道界面减阻特性的影响[J]. 表面技术, 2017, 46(6): 42-48.

[71] 孔庆盼, 纪献兵, 周儒鸿, 等. 亲-疏水两层结构表面强化蒸汽冷凝传热[J]. 浙江大学学报(工学版), 2020, 54(5): 1022-1028, 1038.

[72] Jiale Huang, Wei Zhou, Jianhua Xiang, et al. Development of novel flexible heat pipe with multistage design inspired by structure of human spine[J]. Applied Thermal Engineering, 2020, 175: 115392.

[73] 李娟, 朱章钰, 翟昊, 等. 基于仿生学的强化传热与减阻技术研究进展[J]. 化工进展, 2021, 40(5): 2375-2388.

[74] 丁欣硕, 刘斌. Fluent17.0流体仿真从入门到精通[M]. 北京: 清华大学出版社, 2018: 102.

[75] 曹昊. 不同微通道内液滴生成规律的CFD模拟[D]. 南昌大学, 2021.

[76] 李燕斌. 分布盘式旋转填充床内流体流动与传质性能研究[D]. 北京化工大学, 2021.

[77] 陈海飞. 热管技术与其在太阳能热水器中的应用[D]. 合肥工业大学, 2003.

[78] R. D. Present. Kinetic Theory of Gases[M]. American Journal of Physics, 1961, 29(9): 90.

[79] Lee W.H. A pressure iteration scheme for two-phase flow modeling[R]. Technical Paper No. La-UR-79-975, Los Alamos: Los Alamos National Laboratory, 1979.

[80] Wu H.L., Peng X.F., Ye P., et al. Simulation of refrigerant flow boiling in serpentine tubes[J]. International Journal of Heat and Mass Transfer, 2007, 50(50): 1196-1195.

[81] Peskin Charles S.. The immersed boundary method[J]. Acta Numerica, 2002, 11: 479-517.

[82] Brackbill J.U, Kothe D.B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.

[83] Marianne M. Francois, Sharen J. Cummins, Edward D. Dendy, et al. A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework.[J]. J. Comput. Physics, 2006, 213(1): 141-173.

[84] 胡梦龙. 微通道平板回路热管可视化及热传输性能研究[D]. 广东工业大学, 2021.

中图分类号:

 TK172.4    

馆藏号:

 2023-015-0109    

开放日期:

 2023-09-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式