- 无标题文档

题名:

 基于量子粒子群算法的柔性车间多目标优化调度方法研究    

作者:

 管理    

学号:

 SX2203174    

保密级别:

 公开    

语种:

 chi    

学科代码:

 081100    

学科:

 工学 - 控制科学与工程    

学生类型:

 硕士    

学位:

 工学硕士    

入学年份:

 2022    

学校:

 南京航空航天大学    

院系:

 自动化学院    

专业:

 控制科学与工程    

研究方向:

 故障诊断与健康管理    

导师姓名:

 姜斌    

导师单位:

 自动化学院    

完成日期:

 2025-01-05    

答辩日期:

 2025-03-09    

外文题名:

 

Multi Objective Optimization Scheduling Method for Flexible Job Shop Based on Quantum Particle Swarm Optimization Algorithm

    

关键词:

 柔性作业车间 ; 量子粒子群算法 ; 静态调度 ; 动态调度 ; 多目标优化 ; 预测性维护     

外文关键词:

 Flexible job shop ; Quantum particle swarm algorithm ; Static scheduling ; Dynamic scheduling ; Multi-objective optimization ; Predictive maintenance   ;     

摘要:

智能生产是智能制造的重要发展方向,智能工厂是推动智能生产的关键因素。作为智能工厂的核心,柔性作业车间调度技术被广泛研究。在实际生产中,车间调度研究面临复杂性、动态性、多目标优化等多重挑战,加工订单和加工设备的不合理分配常常导致生产效率低下,阻碍智能工厂的智能化和高端化发展。同时,柔性车间中常出现机器故障、紧急订单和订单取消等突发性干扰,影响生产计划的稳定性。此外,车间设备的损耗故障导致维护活动的不可预期,严重影响生产活动的连续性。因此,研究高效的柔性车间调度技术从而合理配置车间生产资源,成为智能制造技术赋能新质生产力的关键。论文研究柔性车间的多目标优化静态调度、多目标优化动态调度及调度与预测性维护多目标协同优化,旨在构建高效智能的生产调度体系。结合量子粒子群算法建立不同场景下的车间调度模型,综合考虑订单约束和设备约束间的耦合关系,优化寻优算法的搜索能力,寻求最优生产调度方案。

(1)针对车间静态调度问题,研究基于量子粒子群算法的柔性车间多目标优化静态调度方法。提出一种多目标改进量子粒子群算法,建立以完工时间、最大机器负荷和机器总负荷为优化目标的静态调度模型;设计混合初始化方法获得高质量的初始种群,采用变邻域搜索策略解决算法局部最优问题;通过非支配排序和拥挤度计算筛选出静态调度最优解集。

(2)针对车间动态调度问题,研究突发干扰下的柔性车间多目标优化动态调度方法。设计一种应对突发干扰的动态优化调度策略,建立以最大完工时间、机器总负荷和鲁棒性为优化目标的重调度模型;提出一种基于事件触发的重调度机制,建立预-反应动态调度模型提升响应速率;采用完全重调度策略求解机器故障和订单取消问题,采用重排插单处理紧急订单,优化工件和机器资源释放;通过不同动态场景下的重调度方案的鲁棒性验证所提方法的有效性。

(3)针对车间调度与预测性维护协同优化问题,研究柔性车间多目标调度与预测性维护协同管控方法。考虑订单工艺路径和产线机器资源复杂耦合特性,建立以最大完工时间、最大机器负荷和机器总负荷为优化目标的柔性车间调度模型;采用威布尔分布模型准确刻画车间设备的恶化效应,基于设备预测性维护模型设计最优维护策略;提出基于改进量子粒子群算法的柔性车间多目标调度与预测性维护协同优化方法,构造邻域搜索算子和两种变异算子,提升调度与维护协同优化算法的搜索能力与搜索精度。

(4)针对航空精密零部件车间人工排产及突发干扰问题,设计基于supOS系统的车间动态调度平台。建立以车间、数据、模型和产线应用为核心的加工车间系统架构,提升加工车间的信息化管理水平;针对机器故障和紧急订单突发扰动进行重调度,为管理者提供决策支持。

外摘要要:

Intelligent production is an important development direction of intelligent manufacturing, and intelligent factories are a key factor in promoting intelligent production. As an important carrier of smart factories, flexible job shop scheduling technology has been widely studied. In actual production, the unreasonable allocation of processing orders and processing equipment often leads to low production efficiency, hindering the intelligent and high-end development of smart factories. Sudden disturbances such as machine malfunctions, urgent orders, and order cancellations often occur in flexible workshops, affecting the stability of production plans. In addition, the wear and tear of workshop equipment leads to unpredictable maintenance activities, seriously affecting the continuity of production activities. Therefore, researching efficient flexible workshop scheduling technology to rationally allocate workshop production resources has become the key to empowering new quality productivity with intelligent manufacturing technology. This article studies the multi-objective optimization static scheduling, multi-objective optimization dynamic scheduling, and multi-objective collaborative optimization of scheduling and predictive maintenance in flexible workshops, aiming to build an efficient and intelligent production scheduling system. Combining quantum particle swarm optimization algorithm to establish workshop scheduling models in different scenarios, comprehensively considering the coupling relationship between order constraints and equipment constraints, optimizing the search ability of the optimization algorithm, and seeking the optimal production scheduling solution.

(1) A multi-objective optimization static scheduling method for flexible workshops based on quantum particle swarm optimization algorithm is studied for the static scheduling problem in the workshop. Propose an improved quantum particle swarm algorithm based on nonlinear factor control, and establish a static scheduling model with completion time, maximum machine load, and total machine load as optimization objectives; Design a mixed initialization method to obtain a high-quality initial population, and use a variable neighborhood search strategy to optimize the local optimal problem of the algorithm; Select the optimal solution set for static scheduling through non dominated sorting and congestion calculation.

(2) A multi-objective optimization dynamic scheduling method for flexible workshops under sudden disturbances is studied for the dynamic scheduling problem in the workshop. Design a dynamic optimization scheduling strategy to deal with sudden disturbances, establish a rescheduling model with maximum completion time, total machine load, and robustness as optimization objectives; Propose an event triggered rescheduling mechanism and establish a pre reaction dynamic scheduling model to improve response rate; Adopting a complete rescheduling strategy to solve machine failure and order cancellation problems, using reordering insertion to handle emergency orders, and improving the release and adjustment of workpiece and machine resources; Validate the effectiveness of the proposed method through the robustness of rescheduling schemes in different dynamic scenarios.

(3) To address the collaborative optimization problem of workshop scheduling and predictive maintenance, a multi-objective scheduling and predictive maintenance collaborative control method for flexible workshops is studied. Considering the complex coupling characteristics of order process path and production line machine resources, a flexible workshop scheduling model is established with the optimization objectives of maximum completion time, maximum equipment load, and total equipment load; Using Weibull distribution to accurately characterize the deterioration effect of workshop equipment, and designing the optimal maintenance strategy based on equipment predictive maintenance model; Propose a multi-objective scheduling and predictive maintenance collaborative optimization method for flexible workshops based on improved quantum particle swarm optimization algorithm. Construct neighborhood search operator and two mutation operators to enhance the search capability and accuracy of the scheduling and maintenance collaborative optimization algorithm.

(4) Design a dynamic scheduling platform for the aviation precision parts workshop to address the issue of manual order scheduling in the workshop. Build a processing workshop system architecture with workshop, data, models, and production line applications as the core, effectively improving the information management level of the processing workshop; Rescheduling for machine malfunctions and emergency orders, providing decision support for managers.

参考文献:

[1] 周济. 智能制造——“中国制造2025”的主攻方向[J]. 中国机械工程, 2015, 26(17): 2273-2284.

[2] 陶飞, 张萌, 程江峰, 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(01): 1-9.

[3] 张洁, 高亮, 秦威, 等. 大数据驱动的智能车间运行分析与决策方法体系[J]. 计算机集成制造系统, 2016, 22(05): 1220-1228.

[4] Jackson J R. Scheduling a production line to minimize maximum tardiness[J]. Management Science Research Project, 1955.

[5] 张洁, 秦威. 智能制造调度为先——《制造系统智能调度方法与云服务》导读 [J]. 中国机械工程, 2019, 30(08): 1002-1007.

[6] Sisson R L. Methods of sequencing in job shops–a review[J]. Operations Research, 1959, 7(01): 10-29.

[7] Johnson S M. Optimal two‐and three‐stage production schedules with setup times included[J]. Naval Research Logistics Quarterly, 1954, 1(01): 61-68.

[8] Akers S B. A Graphical Approach to Production Scheduling Problems[J]. Operations Research, 1956, 4(02): 244-245.

[9] Bowman E H. The schedule-sequencing problem[J]. Operations Research, 1959, 7(5): 621-624.

[10] Brucker P, Schlie R. Schlie. Job-shop scheduling with multi-purpose machines[J]. Computing, 1990, 45(04): 369-375.

[11] Brandimarte P. Routing and scheduling in a flexible job shop by tabu search[J]. Annals of Operations Research, 1993, 41(03): 157-183.

[12] Kacem I, Hammadi S, Borne P. Approach by localization and multi-objective evolutionary optimization for flexible job-shop scheduling problems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2002, 32(01): 1-13.

[13] Blackstone J H, Phillips D T, Hogg G L. A state-of-the-art survey of dispatching rules for manufacturing job shop operations[J]. International Journal of Production Research, 1982, 20(01): 27-45.

[14] Blazewicz J, Domschke W, Pesch E. The job shop scheduling problem: Conventional and new solution techniques[J]. European Journal of Operational Research, 1996, 93(01): 1-33.

[15] Sellers D W. A survey of approaches to the job shop scheduling problem[C]//Proceedings of 28th Southeastern Symposium on System Theory. IEEE, 1996: 396-400.

[16] 钱晓龙, 唐立新, 刘文新. 动态调度的研究方法综述[J]. 控制与决策, 2001, (02): 141-145.

[17] Xie J, Gao L, Peng K, et al. Review on flexible job shop scheduling[J]. IET Collaborative Intelligent Manufacturing, 2019, 1(03): 67-77.

[18] 李新宇, 黄江平, 李嘉航, 等. 智能车间动态调度的研究与发展趋势分析[J]. 中国科学: 技术科学, 2023, 53(07): 1016-1030.

[19] Ramasesh R. Dynamic job shop scheduling: A survey of simulation research[J]. OMEGA, 1990, 18(01): 43-57.

[20] Allahverdi A, Gupta J N D, Aldowaisan T. A review of scheduling research involving setup considerations[J]. Omega, 1999, 27(02): 219-239.

[21] Gordon V, Proth J M, Chu C. A survey of the state-of-the-art of common due date assignment and scheduling research[J]. European Journal of Operational Research, 2002, 139(01): 1-25.

[22] Allahverdi A, Ng C T, Cheng T C E, et al. A survey of scheduling problems with setup times or costs[J]. European Journal of Operational Research, 2008, 187(3): 985-1032.

[23] Abdullah S, Abdolrazzagh-Nezhad M. Fuzzy job-shop scheduling problems: A review[J]. Information Sciences, 2014, 278: 380-407.

[24] 彭建刚, 刘明周, 张铭鑫, 等. 多目标柔性作业车间调度算法研究综述[J]. 中国机械工程, 2014, 25(23): 3244-3254.

[25] Dhiflaoui M, Nouri H E, Driss O B. Dual-resource constraints in classical and flexible job shop problems: a state-of-the-art review[J]. Procedia Computer Science, 2018, 126: 1507-1515.

[26] Gao K, Cao Z, Zhang L, et al. A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(04): 904-916.

[27] Xiong H, Shi S, Ren D, et al. A survey of job shop scheduling problem: The types and models[J]. Computers and Operations Research, 2022, 142: 105731.

[28] Jatoth, Mohan, et al. A review of dynamic job shop scheduling techniques[J]. Procedia Manufacturing, 2019, 30: 34-39.

[29] Jiang B, Ma Y J, Chen L J, et al. A review on intelligent scheduling and optimization for flexible job shop[J]. International Journal of Control, Automation, and Systems, 2023, 21(10): 3127-3150.

[30] Gholami M, Zandieh M. Integrating simulation and genetic algorithm to schedule a dynamic flexible job shop[J]. Journal of Intelligent Manufacturing, 2009, 20: 481-498.

[31] Al-Hinai N, Elmekkawy T Y. Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm[J]. International Journal of Production Economics, 2011, 132(2): 279-291.

[32] He W, Sun D. Scheduling flexible job shop problem subject to machine breakdown with route changing and right-shift strategies[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66: 501-514.

[33] Li Y, He Y, Wang Y, et al. An optimization method for energy-conscious production in flexible machining job shops with dynamic job arrivals and machine breakdowns[J]. Journal of Cleaner Production, 2020, 254: 120009.

[34] Ahmadi E, Zandieh M, Farrokh M, et al. A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms[J]. Computers & Operations Research, 2016, 73: 56-66.

[35] Buddala R, Mahapatra S S. Two-stage teaching-learning-based optimization method for flexible job-shop scheduling under machine breakdown[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(03): 1419-1432.

[36] Aydin T, Gurkan O, Kamisli O Z, et al. Extracting new dispatching rulesfor multi-objective dynamic flexible job shop scheduling with limited buffer spaces[J]. Cognitive Computation, 2020, 12: 195-205.

[37] 钟小玉, 韩玉艳, 姚香娟, 等. 不确定工时下多目标柔 作业车间调度问题的进化求解方法 [J]. 中国科学: 信息科学, 2023, 53(04): 737-757.

[38] Luo S, Zhang L X, Fan Y S. Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning[J]. Computers & Industrial Engineering, 2021, 159, 107489.

[39] Zhang G H, Lu X X, Liu X, et al. An effective two-stage algorithm based on convolutional neural network for the bi-objective flexible job shop scheduling problem with machine breakdown[J]. Expert Systems with Application, 2022, 203: 117460.

[40] Wang H, Chen J F, Liu C, et al. Multi-objective reinforcement learning framework for dynamic flexible job shop scheduling problem with uncertain events[J]. Applied Soft Computing, 2022, 131: 109717.

[41] Luo S, Zhang L, Fan Y. Real-time scheduling for dynamic partial-no-wait multiobjective flexible job shop by deep reinforcement learning[J]. IEEE Transactions on Automation Science and Engineering, 2021, 19(04): 3020-3038.

[42] 蔡敏, 王艳, 纪志成. 基于多策略融合量子粒子群算法的MOFFJSP研究[J]. 系统仿真学报, 2021, 33(11): 2615-2626.

[43] Duan J G, Wang J H. Robust scheduling for flexible machining job shop subject to machine breakdowns and new job arrivals considering system reusability and task recurrence[J]. Expert Systems with Application, 2022, 203: 117489.

[44] Xiong J, Xing L N, Chen Y W. Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns[J]. International Journal of Production Economics, 2013, 141(01): 112-126.

[45] 雷德明, 杨冬婧. 具有总能耗约束的柔性作业车间调度问题研究[J]. 自动化学报, 2018, 44(11): 2083-2091.

[46] 轩华, 李文婷, 李冰. 混合离散人工蜂群算法求解含不相关并行机的分布式柔性流水线调度[J]. 控制与决策, 2023, 38(03): 779-789.

[47] 王凌, 王晶晶. 考虑运输时间的分布式绿色柔性作业车间调度协同群智能优化[J]. 中国科学: 技术科学, 2023, 53(02): 243-257.

[48] Yang Y, Huang M, Wang Z Y, et al. Robust scheduling based on extreme learning machine for bi-objective flexible job-shop problems with machine breakdowns[J]. Expert Systems with Application, 2020, 158: 113545.

[49] Wang H, Sheng B, Lu Q, et al. A novel multi-objective optimization algorithm for the integrated scheduling of flexible job shops considering preventive maintenance activities and transportation processes[J]. Soft Computing, 2021, 25(04): 1-27.

[50] Wang Y M, Yin H L, Qin K D. A novel genetic algorithm for flexible job shop scheduling problems with machine disruptions[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(5-8): 1317-1326.

[51] Shen X N, Yao X. Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems[J]. Information Sciences, 2015, 298: 198-224.

[52] Wei L X, He J X, Guo Z Y, et al. A multi-objective migrating birds optimization algorithm based on game theory for dynamic flexible job shop scheduling problem[J]. Expert Systems with Applications, 2023, 227: 120268.

[53] Fattahi P, Fallahi A. Dynamic scheduling in flexible job shop systems by considering simultaneously efficiency and stability[J]. Cirp Journal of Manufacturing Science & Technology, 2010, 2(02): 114-123.

[54] Nie L, Gao L, Li P, et al. A GEP-based reactive scheduling policies constructing approach for dynamic flexible job shop scheduling problem with job release dates[J]. Journal of Intelligent Manufacturing, 2013, 24(04): 763-774.

[55] Gao K Z, Suganthan P N, Chua T J, et al. A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion[J]. Expert Systems with Applications, 2015, 42(21): 7652-7663.

[56] Gao K Z, Suganthan P N, Pan Q K, et al. Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion[J]. Knowledge-Based Systems, 2016: 1-16.

[57] Zhang F F, Mei Y, Nguyen S, et al. Task relatedness-based multitask genetic programming for dynamic flexible job shop scheduling[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(06): 1705-1719.

[58] 黄鹏鹏, 赵春, 郭煜. 急件订单插入下生产系统的重调度[J]. 计算机科学, 2022, 49(S2): 169-174.

[59] 张祥. 加急订单扰动的柔性作业车间动态调度问题研究[D], [硕士学位论文]. 无锡: 江南大学, 2021.

[60] 张利平. 作业车间预反应式动态调度理论与方法研究[D], [博士学位论文]. 武汉: 华中科技大学, 2013.

[61] 何院生. 考虑能耗优化的柔性作业车间动态调度方法研究[D], [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2016.

[62] Aydin M E, Q¨Ztemel E. Dynamic job-shop scheduling using reinforcement learning agents[J]. Robotics & Autonomous Systems, 2000, 33(2-3): 169-178.

[63] Wang Y C, Usher J M. Learning policies for single machine job dispatching[J]. Robotics & Computer Integrated Manufacturing, 2004, 20(06): 553-562.

[64] Bouazza W, Sallez Y, Beldjilali B. A distributed approach solving partially flexible job-shop scheduling problem with a q-learning effect[J]. IFAC-PapersOnLine, 2017, 50 (1), 15890-15895.

[65] Wang Y F. Adaptive job shop scheduling strategy based on weighted q-learning algorithm[J]. Journal Of Intelligent Manufacturing, 2018, 31(02): 417-432.

[66] Luo S. Dynamic multi-objective scheduling for flexible job shop with new job insertions by deep reinforcement learning[J]. Applied Soft Computing Journal, 2020, 91, 106208.

[67] 杨草原. 基于改进鲸鱼优化算法的柔性作业车间调度问题研究[D], [硕士学位论文]. 西安: 长安大学, 2022.

[68] Zhao Y X, Wang H D, Zhang R T, et al. An adaptive scheduling framework for dynamic scheduling problem with random job arrivals and cancellations[J]. 2024 5th International Conference on Computer Engineering and Application (ICCEA), Hangzhou, China, 2024: 425-432.

[69] Du J, Dong P and Sugumaran V. Dynamic production scheduling for prefabricated components considering the demand fluctuation. Intelligent Automation and Soft Computing[J]. 2020, 26, 715-723.

[70] 林自然. 基于多订单多生产线的预制构件生产调度优化模型[J]. 运筹与模糊学, 2022, 12(01): 96-110.

[71] Lu S, Pei J, Liu X, et al. A hybrid DBH-VNS for high-end equipment production scheduling with machine failures and preventive maintenance activities[J]. Journal of Computational and Applied Mathematics, 2021, 384: 113195.

[72] Rahmati S H A, Ahmadi A and Govindan K. A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach[J]. Annals of Operations Research, 2018, 269: 583-621.

[73] 张洪亮, 徐公杰, 鲍蔷, 等. 考虑运输时间和机器预维护的柔性作业车间绿色调度[J]. 计算机集成制造系统, 2024, 30(09): 3111-3124.

[74] Wang H, Sheng B Y, Lu Q B, et al. A novel multi-objective optimization algorithm for the integrated scheduling of flexible job shops considering preventive maintenance activities and transportation processes[J]. Soft Computing, 2021, 25: 2863-2889.

[75] Baykasoğlu A, Madenoğlu F S. Greedy randomized adaptive search procedure for simultaneous scheduling of production and preventive maintenance activities in dynamic flexible job shops[J]. Soft Computing, 2021, 25: 14893-14932.

[76] 董君, 叶春明. 区间数可重入混合流水车间调度与预维护协同优化[J]. 控制与决策, 2021, 36(11): 2599-2608.

[77] An Y, Chen X, Li Y, et al. Flexible job-shop scheduling and heterogeneous repairman assignment with maintenance time window and employee timetable constraints[J]. Expert Systems with Applications, 2021, 186: 115693.

[78] Wocker M M, Ostermeier F F, Wanninger T, et al. Flexible job shop scheduling with preventive maintenance consideration[J]. Journal of Intelligent Manufacturing, 2024, 35(04): 1517-1539.

[79] 朱传军, 冯诗健, 张超勇, 等. 考虑设备预防性维护的开放车间调度问题[J]. 中国机械工程, 2023, 34(14): 1693-1700.

[80] 李佳磊, 顾幸生. 双种群混合遗传算法求解具有预防性维护的分布式柔性作业车间调度问题[J]. 控制与决策, 2023, 38(02): 475-482.

[81] Moradi E, Ghomi S M T F, Zandieh M. Bi-objective optimization research on integrated fixed time interval preventive maintenance and production for scheduling flexible job-shop problem[J]. Expert Systems with Applications, 2011, 38(6): 7169-7178.

[82] 李西兴, 周文龙, 唐红涛, 等. 考虑设备预维护的特种车辆白车身试制车间绿色调度优化方法[J]. 中国机械工程, 2023, 34(15): 1832-1847.

[83] 李聪波, 王睿, 寇阳, 等. 考虑设备预维护的柔性作业车间调度节能优化方法[J]. 机械工程学报, 2021, 57(10): 220-230.

[84] Chen C, Lu N Y, Jiang B, et al. Condition-based maintenance optimization for continuously monitored degrading systems under imperfect maintenance actions[J]. Journal of Systems Engineering and Electronics, 2020, 31: 841-851.

[85] Chen C, Lu N Y, Jiang B, et al. A risk-averse remaining useful life estimation for predictive maintenance[J]. Acta Automatica Sinica, 2022, 8: 412-422.

[86] Chen C, Lu N Y, Chen Y, et al. A data-driven aero-engine degradation prognostic strategy[J]. IEEE Transactions on Cybernetics, 2021, 51: 1531-1541.

[87] 杨涛, 柴天佑. 分布式协同优化的研究现状与展望[J]. 中国科学: 技术科学, 2020, 50(11): 1414-1425.

[88] 王凌, 沈婧楠, 王圣尧, 等. 协同进化算法研究进展[J]. 控制与决策, 2015, 30: 193-202.

[89] Wang J J, Wang L. A knowledge-based cooperative algorithm for energy-efficient scheduling of distributed flow-shop[J]. IEEE Transactions on Systems Man Cybernetics-Systems, 2020, 50: 1805-1819.

[90] 李新宇, 黄江平, 李嘉航, 等. 智能车间动态调度的研究与发展趋势分析[J]. 中国科学: 技术科学, 2023, 53(07): 1016-1030.

[91] 高亮, 张国辉, 王晓娟. 柔性作业车间调度智能算法及其应用[M]. 武汉: 华中科技大学出版社, 2012.

[92] Sun J, Xu W, Feng B. A global search strategy of quantum-behaved particle swarm optimization[C]//IEEE Conference on Cybernetics and Intelligent Systems, 2004. IEEE, 2004, 1: 111-116.

[93] Duan J, Wang J. Robust scheduling for flexible machining job shop subject to machine breakdowns and new job arrivals considering system reusability and task recurrence[J]. Expert Systems with Applications, 2022, 203: 117489.

[94] Ding H, Gu X. Hybrid of human learning optimization algorithm and particle swarm optimization algorithm with scheduling strategies for the flexible job-shop scheduling problem[J]. Neurocomputing, 2020, 414: 313-332.

[95] Zhang Y J, Song Wei. Double archive particle swarm optimization solving flexible job-shop scheduling problem[J]. Journal of Computer Engineering & Applications, 2023, 59(11).

[96] Huang Y Y, Ma Y J, Jiang B, et al. An integrated optimization algorithm of cutting parameters and scheduling for flexible job shop[C]. 2023 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Yibin, China, 2023: 1-6.

[97] 吴贝贝, 张宏立, 王聪, 等. 基于正态云模型的状态转移算法求解多目标柔性作业车间调度问题[J]. 控制与决策, 2021, 36(05): 1181-1190.

[98] 孟冠军, 杨大春, 陶细佩. 基于混合人工蜂群算法的多目标柔性作业车间调度问题研究[J]. 计算机应用研究, 2019, 36(04): 972-979.

[99] 周恺, 王艳, 纪志成. 混合量子粒子群算法求解模具车间调度问题[J]. 系统仿真学报, 2016, 28(06): 1247-1254.

中图分类号:

 TP273    

馆藏号:

 2025-003-0367    

开放日期:

 2025-09-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式