中文题名: |
大型舱体构件原位加工双机器人协同高精度控制方法研究
|
姓名: |
白权
|
学号: |
BX1805521
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
082503
|
学科名称: |
工学 - 航空宇航科学与技术 - 航空宇航制造工程
|
学生类型: |
博士
|
学位: |
工学博士
|
入学年份: |
2018
|
学校: |
南京航空航天大学
|
院系: |
机电学院
|
专业: |
航空宇航科学与技术
|
研究方向: |
复杂结构多机器人协同制造
|
第一导师姓名: |
沈建新
|
第一导师单位: |
机电学院
|
第二导师姓名: |
田威
|
完成日期: |
2023-12-18
|
答辩日期: |
2023-12-18
|
外文题名: |
Research on Dual-Robot Synchronous High Precision Control Method for In-Situ Machining of Large Cabin Components
|
中文关键词: |
大型复杂构件 ; 多机器人协同 ; 原位制造 ; 运动规划 ; 视觉伺服
|
外文关键词: |
Large and complex components ; Multi-robot collaboration ; In-situ manufacturing ; Motion planning ; Visual servoing
|
中文摘要: |
︿
随着我国载人航天工程等重大项目的实施,传统以加工中心等专用机床为核心的加工手段已经无法适应当前航天器舱体等的大型复杂构件日趋大型化、复杂化的发展趋势。采用“工件不动+加工装备移动”的多机器人协同“原位加工”模式,因其工作空间、灵活性、协作模式以及作业能力等方面的优势,为大型复杂构件的高精度加工提供了新思路。本文以航天器大型复杂构件多机器人系统在“原位加工”模式下的应用为背景,提出了基于任务优先级法的移载机器人运动控制策略,有效提升了移载机器人一体化作业运动规划的刚度性能;提出了基于交叉耦合误差模型的鲁棒协同定位控制算法,实现了单机定位误差与双机协同定位误差同步收敛;提出了面向动态目标连续跟踪的视觉伺服双机器人协同轨迹跟踪控制方法,提升了连续运动过程中的双机器人的协同轨迹跟踪精度;搭建了基于分层式结构的视觉伺服双机器人协同加工系统,实现了双机器人协同高精度定位/轨迹跟踪控制方法在制孔和铣削上的应用。主要研究内容和取得成果如下:
(1)研究了“AGV移载平台+工业机器人”移载机器人一体化作业性能评价方法,提出了包括灵巧性能、重心稳定性等的性能评价指标,在此基础上分析了移载机器人连续运动过程中加速度层连续条件下的关节空间物理约束条件。结合系统连续运动过程中的机器人刚度性能评价指标,利用任务优先级法将作业过程中的系统速度层约束、灵巧性能约束等进行分层运动规划。仿真结果显示该方法能够在满足关节速度层物理约束的条件下,提升连续作业过程中的刚度性能。
(2)针对双机器人协同作业过程中“点到点”高精度定位需求,探究了双机器人协同运动过程中一致性误差的产生及叠加原理,提出了交叉耦合视觉伺服双机器人协同鲁棒控制方法。针对双机器人协同定位过程中的随机产生的单机及双机一致性误差,建立基于虑及双侧单机误差的交叉耦合一致性误差模型,设计面向单机误差和一致性误差同步收敛的鲁棒控制器,试验结果证明协同控制方法能够实现协同定位精度0.15 mm。
(3)针对双机器人协同作业过程中的连续轨迹跟踪需求,提出了双机器人连续目标动态跟踪视觉伺服协同控制方法。提出了一种三阶双目标位姿平滑估计算法,降低了末端执行器高速运动轨迹跟踪过程中的测量噪声,为双侧末端执行器连续轨迹跟踪运动过程中的高精度位姿测量及跟踪打下了基础。提出了一种针对连续轨迹动态跟踪的双机器人交叉耦合鲁棒控制方法,试验结果证明其协同轨迹跟踪精度可达0.2 mm。
(4)搭建了基于“IPC+实时工业现场总线”总体框架的大场景视觉伺服双机器人协同制孔/铣削加工系统,开展了双机器人协同加工试验,验证了基于双目视觉引导的大视场双机器人协同加工方法对于提升大型舱体构件关联安装支架一致性加工精度的有效性。
本文从移载机器人一体化作业运动控制和双机器人视觉伺服协同控制两方面开展了深入研究,在理论层面提出了面向作业刚度性能最优的移载机器人一体化运动控制方法和基于交叉耦合误差模型的双机器人协同视觉伺服高精度控制方法,在应用层面基于自主研发的双机器人视觉伺服协同加工系统完成了舱体模拟件表面关联尺寸支撑支架的协同加工任务。本文研究成果推动了以多机器人为载体的“原位加工”模式在航空航天先进装备制造业中的应用,具有重要的理论指导意义与工程应用价值。
﹀
|
外文摘要: |
︿
With the launch of major projects such as China’s manned spaceflight project, the processing methods centered on special machine tools such as machining centers have been unable to adapt to the increasingly large and complex development trend of large and complex components such as spacecraft cabins. The multi-robot collaborative “in-situ processing” mode of “workpiece stationary + processing equipment movement” provides a new idea for the high-precision processing of large and complex components. This article takes the application of multi-robot system for large and complex components of spacecraft in “in-situ processing” mode as the background, proposes a mobile robot motion control method based on task priority method, effectively improves the stiffness performance of mobile robot integrated operation motion planning; proposes a robust cooperative positioning control algorithm based on cross-coupling error model, which realizes the synchronous convergence of single-machine positioning error and double-machine cooperative positioning error. A cooperative trajectory tracking control method for dual robots oriented to continuous tracking of dynamic targets is proposed, which improves the cooperative trajectory tracking accuracy of dual robots in continuous motion process and realizes visual servoing cooperative trajectory tracking of dual robots; a visual servoing cooperative processing system based on hierarchical structure is built to realize high-precision hole-making and milling by dual robots.
(1) The performance evaluation method of mobile robot integrated operation was studied. Performance evaluation indicators including dexterity and center of gravity stability were proposed, and the physical constraint conditions of joint space under the continuous acceleration layer continuous condition of mobile robot continuous motion process were analyzed. The layered motion planning of system speed layer constraints and dexterity performance constraints was carried out by using task priority method combined with the stiffness performance evaluation index of robots in the system’s continuous motion process. Simulation results showed that through the mobile robot integrated motion planning method based on task priority method, the stiffness performance planning results in the continuous operation process had been greatly improved compared with the case without stiffness constraints under the condition of satisfying the physical constraint conditions of joint speed layer.
(2) The generation and superposition principle of consistency error in cooperative motion of dual robots were investigated. A cross-coupling visual servoing robust control method was proposed. To address the random single-machine and double-machine consistency errors generated during the cooperative positioning process of dual robots, a cross-coupling consistency error model based on consideration of single-machine errors on both sides was established. A robust controller was designed for synchronous convergence of single-machine error and consistency error. Experimental results demonstrate that the cooperative control method can achieve a cooperative positioning accuracy of 0.15 mm.
(3) A dynamic visual servoing cooperative control method for dual robots was proposed to address the continuous trajectory tracking requirements in the cooperative operation process of dual robots. A third-order dual-target pose smoothing estimation algorithm was proposed to solve the problem of measurement noise in the high-speed motion trajectory tracking process of the end effector, laying a foundation for high-precision pose measurement and tracking of the end effector on both sides during continuous trajectory tracking. A cross-coupling robust control method for dual robots was proposed for continuous trajectory dynamic tracking, and experimental results showed that its cooperative trajectory tracking accuracy can reach 0.2 mm.
(4) Based on the cooperative control theory research foundation in multi-robot collaborative “in-situ processing” process, a large-scale visual servoing dual-robot cooperative control hole/milling processing system based on the “IPC+real-time industrial fieldbus” overall framework was built for large-scale scenes. Dual-robot cooperative processing experiments were carried out based on the above physical experimental platform, and it was verified that the dual-view visual-guided large-field dual-robot cooperative processing method can effectively improve the consistency of processing accuracy of associated installation brackets.
In summary, this thesis has conducted in-depth research on the difficult problems in multi-robot in-situ machining process from two aspects: mobile robot integrated operation motion control and binocular vision servoing collaborative control of two robots. At the theoretical level, it proposes a mobile robot integrated operation motion control method oriented to the optimal stiffness performance of the operation and a high-precision collaborative control method of binocular vision servoing based on cross-coupling error model for two robots. At the application level, based on the self-developed visual servoing two-robot collaborative machining system, it has completed the collaborative machining task of surface-related size support brackets of large and complex components simulation parts.
﹀
|
参考文献: |
︿
[1] 陶波, 赵兴炜, 丁汉. 大型复杂构件机器人移动加工技术研究[J]. 中国科学:技术科学, 2018, 048(012): 1302-1312. [2] 易旺民, 隆昌宇, 胡瑞钦. 面向航天器装配测试的机器人系统及应用(下)[J]. 中国航天, 2019, 0(3): 1002-7742 [3] Madsen O, Bøgh S, Schou C, et al. Integration of mobile manipulators in an industrial production[J]. Industrial Robot: An International Journal, 2015, 42: 11-18. [4] Zhou K, Ebenhofer G, Eitzinger C, et al. Mobile manipulator is coming to aerospace manufacturing industry[C]// Proceedings of the 2014 IEEE International Symposium on Robotic and Sensors Environments (ROSE) Proceedings, Timisoara, 2014: 94-99. [5] Scheurer C, Fiore M D, Sharma S, et al. Industrial implementation of a multi-task redundancy resolution at velocity level for highly redundant mobile manipulators[C]// Proceedings of the Proceedings of ISR 2016: 47st International Symposium on Robotics, Munich, 2016: 1-9. [6] Ren S, Xie Y, Yang X, et al. A method for optimizing the base position of mobile painting manipulators[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(1): 370-375. [7] Logemann T. Mobile robot assembly cell (RACe) for drilling and fastening[R]. SAE Technical Paper, 2016, 2016-01-2078. [8] Prat P, Gueydon E. Cooperative robots for full automation[R]. SAE Technical Paper, 2011, 2011-01-2536. [9] Brillinger C, Susemihl H, Ehmke F, et al. Mobile laser trackers for aircraft manufacturing: Increasing accuracy and productivity of robotic applications for large parts[R]. SAE Technical Paper, 2019, 2019-01-1368. [10] Susemihl H, Brillinger C, Stürmer S P, et al. Referencing strategies for high accuracy machining of large aircraft components with mobile robotic systems[R]. SAE Technical Paper, 2017, 2017-01-2166. [11] 谢福贵, 梅斌, 刘辛军, 等. 一种大型复杂构件加工新模式及新装备探讨[J]. 机械工程学报, 2020, 56(19): 70-78. [12] Waurzyniak P. Aerospace automation stretches beyond drilling and filling[J]. Manufacturing Engineering, 2015, 154(4): 73-74, 76, 78, 80, 82-84, 86. [13] Everhart T. Neighboring mobile robot cell with drilling and fastening[R]. SAE Technical Paper, 2017, 2017-01-2094. [14] 田威, 焦嘉琛, 李波, 等. 航空航天制造机器人高精度作业装备与技术综述[J]. 南京航空航天大学学报, 2020, 52(03): 341-352. [15] 丰飞, 严思杰, 丁汉. 大型风电叶片多机器人协同磨抛系统的设计与研究[J]. 机器人技术与应用, 2018(05): 16-24. [16] 段晋军. 多机器人协作焊接中的轨迹规划和位置力协调控制研究[博士学位论文]. 南京: 东南大学, 2019. [17] Choset H, Lynch K M, Hutchinson S, et al. Principles of robot motion: Theory, algorithms, and implementations[M]. Cambridge: MIT Press, 2005. [18] Whitney D E. Resolved motion rate control of manipulators and human prostheses[J]. IEEE Transactions on Man-Machine Systems, 1969, 10(2): 47-53. [19] Faroni M, Beschi M, Pedrocchi N, et al. Predictive inverse kinematics for redundant manipulators with task scaling and kinematic constraints[J]. IEEE Transactions on Robotics, 2019, 35(1): 278-285. [20] 蔡炳煌. 冗余机械臂同层双判据与异层等价性及混合层解析研究[博士学位论文]. 广州: 中山大学, 2010. [21] Nakamura Y, Hanafusa H, Yoshikawa T. Task-priority based redundancy control of robot manipulators[J]. The International Journal of Robotics Research, 1987, 6(2): 3-15. [22] Maciejewski A A, Klein C A. Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments[J]. The International Journal of Robotics Research, 1985, 4(3): 109-117. [23] Björck Å. Numerical methods for least squares problems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1996. [24] Chiaverini S. Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators[J]. IEEE Transactions on Robotics and Automation, 1997, 13(3): 398-410. [25] Tang Q, Liang L, Xie J, et al. Task-priority redundancy resolution on acceleration level for underwater vehicle-manipulator system[J]. International Journal of Advanced Robotic Systems, 2017, 14(4): 172988141771982. [26] Khatib M, Khudir K A, Luca A D. Task priority matrix at the acceleration level: Collision avoidance under relaxed constraints[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4970-4977. [27] LIEGEOIS A. Automatic supervisory control of the configuration and behavior of multibody mechanisms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1977, 7(12): 868-871. [28] Kanoun O, Lamiraux F, Wieber P B. Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task[J]. IEEE Transactions on Robotics, 2011, 27(4): 785-792. [29] Sentis L, Khatib O. Control of free-floating humanoid robots through task prioritization[C]// Proceedings of the Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, 2005: 1718-1723. [30] Deo A S, Walker I D. Minimum effort inverse kinematics for redundant manipulators[J]. IEEE Transactions on Robotics and Automation, 1997, 13(5): 767-775. [31] Antonelli G, Indiveri G, Chiaverini S. Prioritized closed-loop inverse kinematic algorithms for redundant robotic systems with velocity saturations[C]// Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 2009: 5892-5897. [32] Flacco F, Luca A D, Khatib O. Control of redundant robots under hard joint constraints: Saturation in the null space[J]. IEEE Transactions on Robotics, 2015, 31(3): 637-654. [33] Flacco F, Luca A D, Khatib O. Motion control of redundant robots under joint constraints: Saturation in the null space[C]// Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, 2012: 285-292. [34] Khudher D, Powell R. Quadratic programming for inverse kinematics control of a hexapod robot with inequality constraints[C]// Proceedings of the 2016 International Conference on Robotics: Current Trends and Future Challenges (RCTFC), Thanjavur, 2016: 1-5. [35] Zhang Y, Li S, Zhou X. Recurrent-neural-network-based velocity-level redundancy resolution for manipulators subject to a joint acceleration limit[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3573-3582. [36] Bayle B, Fourquet J, Renaud M. Manipulability analysis for mobile manipulators[C]// Proceedings of the Proceedings 2001 ICRA IEEE International Conference on Robotics and Automation (Cat No01CH37164), Seoul, 2001: 1251-1256. [37] Zhang H, Sheng Q, Sun Y, et al. A novel coordinated motion planner based on capability map for autonomous mobile manipulator[J]. Robotics and Autonomous Systems, 2020, 129: 103554. [38] Chen F, Selvaggio M, Caldwell D G. Dexterous grasping by manipulability selection for mobile manipulator with visual guidance[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 1202-1210. [39] Minami M, Li X, Matsuno T, Yanou A. Dynamic reconfiguration manipulability for redundant manipulators[J]. Journal of Mechanisms and Robotics, 2016, 8(6): 061004. [40] Tringali A, Cocuzza S. Finite-horizon kinetic energy optimization of a redundant space manipulator[J]. Applied Sciences, 2021, 11(5): 2346. [41] Guo D, Zhang Y. Simulation and experimental verification of weighted velocity and acceleration minimization for robotic redundancy resolution[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(4): 1203-1217. [42] Han D, Jun W. Recurrent neural networks for minimum infinity-norm kinematic control of redundant manipulators[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 1999, 29(3): 269-276. [43] Bu Y, Liao W, Tian W, et al. Stiffness analysis and optimization in robotic drilling application[J]. Precision Engineering, 2017, 49: 388-400. [44] Dumas C, Caro S, Garnier S, et al. Joint stiffness identification of six-revolute industrial serial robots[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(4): 881-888. [45] Chen S-F, Kao I. Conservative congruence transformation for joint and cartesian stiffness matrices of robotic hands and fingers[J]. The International Journal of Robotics Research, 2000, 19(9): 835-847. [46] Jiao J, Tian W, Liao W, et al. Processing configuration off-line optimization for functionally redundant robotic drilling tasks[J]. Robotics and Autonomous Systems, 2018, 110: 112-123. [47] Fan Q, Gong Z, Tao B, et al. Base position optimization of mobile manipulators for machining large complex components[J]. Robotics and Computer-Integrated Manufacturing, 2021, 70: 102138. [48] Dillhoefer T, Erdinc PhD F. Power race[R]. SAE Technical Paper, 2019, 2019-01-1345. [49] Andaluz V, Roberti F, Toibero J M, et al. Adaptive unified motion control of mobile manipulators[J]. Control Engineering Practice, 2012, 20(12): 1337-1352. [50] Mashali M, Alqasemi R, Dubey R. Task priority based dual-trajectory control for redundant mobile manipulators[C]// Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, 2014: 1457-1462. [51] Antonelli G, Chiaverini S. Fuzzy redundancy resolution and motion coordination for underwater vehicle-manipulator systems[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(1): 109-120. [52] Jia Y, Xi N, Yu C, et al. Coordinated motion control of a nonholonomic mobile manipulator for accurate motion tracking[C]// Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, 2014: 1635-1640. [53] 陈钦韬. 面向铣削任务的工业机器人刚度位姿优化[J]. 机器人, 2021, 43(1): 90-100. [54] 布音. 工业机器人精密制孔系统刚度特性研究[博士学位论文]. 南京: 南京航空航天大学, 2017. [55] 焦嘉琛. 工业机器人作业系统刚度强化机制与轨迹补偿方法研究[博士学位论文]. 南京: 南京航空航天大学, 2020. [56] 花芳芳. 基于深度神经网络的工业机器人精度补偿方法和应用[硕士学位论文]. 南京: 南京航空航天大学, 2020. [57] Roth Z, Mooring B, Ravani B. An overview of robot calibration[J]. IEEE Journal on Robotics and Automation, 1987, 3(5): 377-385. [58] 田小静. 工业机器人在航空工业中的应用[J]. 自动化与仪器仪表, 2017(10): 156-157, 160. [59] Olsson T, Haage M, Kihlman H, et al. Cost-efficient drilling using industrial robots with high-bandwidth force feedback[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(1): 24-38. [60] Zeng Y, Tian W, Liao W. Positional error similarity analysis for error compensation of industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2016, 42: 113-120. [61] Zeng Y, Tian W, Li D, et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12): 2745-2755. [62] 周炜, 廖文和, 田威. 基于空间插值的工业机器人精度补偿方法理论与试验[J]. 机械工程学报, 2013, 49(03): 42-48. [63] Gao G, Zhang H, San H, et al. Kinematic calibration for industrial robots using articulated arm coordinate machines[J]. International journal of modelling, identification and control, 2019, 31(1): 16-26. [64] Song Y, Liu M, Lian B, et al. Industrial serial robot calibration considering geometric and deformation errors[J]. Robotics and Computer-Integrated Manufacturing, 2022, 76: 102328. [65] Sun X. Kinematics model identification and motion control of robot based on fast learning neural network[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11: 6145–6154. [66] Chen X, Zhang Q, Sun Y. Non-kinematic calibration of industrial robots using a rigid–flexible coupling error model and a full pose measurement method[J]. Robotics and Computer-Integrated Manufacturing, 2019, 57: 46-58. [67] Zhao Y M, Lin Y, Xi F, Guo S. Calibration-based iterative learning control for path tracking of industrial robots[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2921-2929. [68] Faulwasser T, Weber T, Zometa P, et al. Implementation of nonlinear model predictive path-following control for an industrial robot[J]. IEEE Transactions on Control Systems Technology, 2017, 25(4): 1505-1511. [69] Zhao Y M, Lin Y, Xi F, et al. Switch-based sliding mode control for position-based visual servoing of robotic riveting system[J]. Journal of Manufacturing Science and Engineering, 2016, 139(4): 041010. [70] Ghazaei Ardakani M, Olofsson B, Robertsson A, et al. Model predictive control for real-time point-to-point trajectory generation[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(2): 972-983. [71] Guo S, Diao Q, Xi F. Vision based navigation for omni-directional mobile industrial robot[J]. Procedia Computer Science, 2017, 105: 20-26. [72] Munoz-barron B, Rivera-guillen J R, Osornio-rios R A, et al. Sensor fusion for joint kinematic estimation in serial robots using encoder, accelerometer and gyroscope[J]. Journal of Intelligent & Robotic Systems, 2015, 78(3-4): 529-540. [73] Liu Q, Guo H, Ma Y, et al. Real-time error compensation of a 5-axis machining robot using externally mounted encoder systems[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(3): 2793-2802. [74] Mesmer P, Neubauer M, Lechler A, et al. Robust design of independent joint control of industrial robots with secondary encoders[J]. Robotics and Computer-Integrated Manufacturing, 2022, 73: 102232. [75] Stadelmann L, Sandy T, Thoma A, et al. End-effector pose correction for versatile large-scale multi-robotic systems[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 546-553. [76] Liu H, Zhu W, Dong H, et al. Hybrid visual servoing for rivet-in-hole insertion based on super-twisting sliding mode control[J]. International Journal of Control, Automation and Systems, 2020, 18(8): 2145–2156. [77] Kim S H, Nam E, Ha T I, et al. Robotic machining: A review of recent progress[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(9): 1629-1642. [78] Möller C, Schmidt H C, Koch P, et al. Machining of large scaled CFRP-parts with mobile CNC-based robotic system in aerospace industry[J]. Procedia Manufacturing, 2017, 14: 17-29. [79] 李大伟. 基于关节转角反馈的工业机器人精度补偿技术研究[硕士学位论文]. 南京: 南京航空航天大学, 2017. [80] Saund B, DeVlieg R. High accuracy articulated robots with CNC control systems[J]. SAE International Journal of Aerospace, 2013, 6(2): 780-784. [81] Depenthal C. Path tracking with IGPS[C]// Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, 2010: 1-6. [82] Franceschini F, Galetto M, Maisano D, et al. Distributed large-scale dimensional metrology. New insights[M]. London: Springer, 2011. [83] Muelaner J E, Wang Z, Jamshidi J, et al. Verification of the indoor gps system by comparison with points calibrated using a network of laser tracker measurements[C]// Proceedings of the Proceedings of the 6th CIRP-Sponsored International Conference on Digital Enterprise Technology, Berlin, 2010: 607-609. [84] Lertpiriyasuwat V, Berg M C. Adaptive real-time estimation of end-effector position and orientation using precise measurements of end-effector position[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(3): 304-319. [85] 曲巍崴, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报, 2011, 32(10): 1951-1960. [86] 梁新武. 机械手无标定动态视觉伺服研究[博士学位论文]. 武汉: 华中科技大学, 2011. [87] Hill J, Park W T. Real time control of a robot with a mobile camera[J]. Water Resources and Environmental Engineering Research Report (State University of New York at Buffalo, Department of Civil Engineering), 1979: 233-246. [88] Wang H, Guo D, Xu H, et al. Eye-in-hand tracking control of a free-floating space manipulator[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1855-1865. [89] Nobakht H, Liu Y. A hybrid positioning method for eye-in-hand industrial robot by using 3d reconstruction and IBVS[C]// Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, 2015: 2609-2614. [90] Machkour Z, Ortiz-Arroyo D, Durdevic P. Classical and deep learning based visual servoing systems: A survey on state of the art[J]. Journal of Intelligent & Robotic Systems, 2022, 104(1): 1-27. [91] Singh A, Kalaichelvi V, Karthikeyan R. A survey on vision guided robotic systems with intelligent control strategies for autonomous tasks[J]. Cogent Engineering, 2022, 9(1): 2050020. [92] Li C, Li B, Wang R, et al. A survey on visual servoing for wheeled mobile robots[J]. International Journal of Intelligent Robotics and Applications, 2021, 5(2): 203-218. [93] Jokić A, Petrović M, Miljković Z. Methods for visual servoing of robotic systems: A state of the art survey[J]. Tehnika (Beograd), 2018, 73(6): 801-816. [94] Ma X, Feng J, Li Y, et al. Active 6-D position-pose estimation of a spatial circle using monocular eye-in-hand system[J]. International Journal of Advanced Robotic Systems, 2018, 15(1). [95] La Anh T, Song J-B. Robotic grasping based on efficient tracking and visual servoing using local feature descriptors[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(3): 387-393. [96] Hvilshøj M, Bøgh S, Madsen O, et al. The mobile robot “little helper”: Concepts, ideas and working principles[C]//. Proceedings of the 2009 IEEE Conference on Emerging Technologies & Factory Automation, Mallorca, Spain, 2009: 1-4. [97] Ma Y, Zhu W, Zhou Y. Automatic grasping control of mobile robot based on monocular vision[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(3): 1785-1798. [98] 傅宇文. 基于视觉引导的机器人高精度定位与轨迹跟踪控制[硕士学位论文]. 南京: 南京航空航天大学, 2020. [99] Hajiloo A, Keshmiri M, Xie W, et al. Robust online model predictive control for a constrained image-based visual servoing[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2242-2250. [100] Li S, Ghasemi A, Xie W, et al. An enhanced IBVS controller of a 6DOF manipulator using hybrid PD-SMC method[J]. International Journal of Control, Automation and Systems, 2018, 16: 844-855. [101] Bachiller M, Cerrada J A, Cerrada C. A modular scheme for controller design and performance evaluation in 3D visual servoing[J]. Journal of Intelligent & Robotic Systems, 2003, 36(3): 235-264. [102] Beyhan A, Adar N G. Real-time vision-based grasping randomly placed object by low-cost robotic arm using surf algorithm[J]// IOP Conference Series Materials Science and Engineering, Berkley, 2020, 938: 012008. [103] Tao B, Gong Z, Ding H. Survey on uncalibrated robot visual servoing control[J]. Lìxué xuébào, 2016, 48(4): 767-783. [104] 李涛. 机械臂无标定视觉伺服及其网络化控制技术研究[博士学位论文]. 天津: 天津大学, 2020. [105] Kim S, Oh S-Y. Hybrid position and image based visual servoing for mobile robots[J]. Journal of intelligent & fuzzy systems, 2007, 18(1): 73-82. [106] Gao C, Piao X, Tong W. Optimal motion control for IBVS of robot[C]// Proceedings of the Proceedings of the 10th World Congress on Intelligent Control and Automation, Beijing, 2012: 4608-4611. [107] Anwar A, Deng X, Ma H, et al. Quality inspection of remote radio unit (RRU) power port using IBVS[C]// Proceedings of the 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec, 2018: 1-4. [108] Malis E, Chaumette F. Theoretical improvements in the stability analysis of a new class of model-free visual servoing methods[J]. IEEE Transactions on Robotics and Automation, 2002, 18(2): 176-186. [109] Chaumette F. Potential problems of stability and convergence in image-based and position-based visual servoing[C]// The confluence of vision and control. Lecture Notes in Control and Information Sciences, London, 2007(237): 66-78. [110] Corke P I, Hutchinson S A. A new partitioned approach to image-based visual servo control[J]. IEEE Transactions on Robotics and Automation, 2001, 17(4): 507-515. [111] Chaumette F, Malis E. 2 1/2 d visual servoing: A possible solution to improve image-based and position-based visual servoings[C]// Proceedings of the Proceedings 2000 ICRA Millennium Conference IEEE International Conference on Robotics and Automation Symposia Proceedings (Cat No00CH37065), San Francisco, 2000, 1: 630-635. [112] Malis E, Chaumette F, Boudet S. 2 1/2 d visual servoing[J]. IEEE Transactions on Robotics and Automation, 1999, 15(2): 238-250. [113] Ishiyama R, Deguchi K. Optimal motion control for image-based visual servoing by decoupling translation and rotation[J]. Journal of the Robotics Society of Japan, 1999, 17(5): 720-727. [114] 甘亚辉, 戴先中. 多机械臂协调控制研究综述[J]. 控制与决策, 2013, 28(03): 321-333. [115] Brahmi A, Saad M, Gauthier G, et al. Adaptive control of multiple mobile manipulators transporting a rigid object[J]. International Journal of Control, Automation and Systems, 2017, 15: 1779-1789. [116] Gracia L, Sala A, Garelli F. Robot coordination using task-priority and sliding-mode techniques[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(1): 74-89. [117] Dong J, He B, Ming M, et al. Design of open-closed-loop iterative learning control with variable stiffness for multiple flexible manipulator robot systems[J]. IEEE Access, 2019, 7: 23163-23168. [118] Jin L, Liang S, Luo X, et al. Distributed and time-delayed -winner-take-all network for competitive coordination of multiple robots[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 641-652. [119] Lin F, Chou P, Chen C, et al. DSP-based cross-coupled synchronous control for dual linear motors via intelligent complementary sliding mode control[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 1061-1073. [120] Jinjun D, Yahui G, Ming C, et al. Symmetrical adaptive variable admittance control for position/force tracking of dual-arm cooperative manipulators with unknown trajectory deviations[J]. Robotics and Computer-Integrated Manufacturing, 2019, 57: 357-369. [121] Koren Y. Cross-coupled biaxial computer control for manufacturing systems[J]. Journal of Dynamic Systems, Measurement, and Control, 1980, 102(4): 265-272. [122] Sun D, Shao X, Feng G. A model-free cross-coupled control for position synchronization of multi-axis motions: Theory and experiments[J]. IEEE Transactions on Control Systems Technology, 2007, 15(2): 306-314. [123] Dong S, Mills J K. Adaptive synchronized control for coordination of multirobot assembly tasks[J]. IEEE Transactions on Robotics and Automation, 2002, 18(4): 498-510. [124] Zhao D, Zhu Q. Position synchronised control of multiple robotic manipulators based on integral sliding mode[J]. International Journal of Systems Science, 2014, 45: 556-570. [125] Rooks B. Abb’s multimove fires the imagination[J]. Industrial Robot: An International Journal, 2004, 31(5): 401-404. [126] 韩鸿鸾,王海军,王鸿亮. KUKA(库卡)工业机器人编程与操作[M]. 北京: 化学工业出版社, 2020. [127] 曲道奎,谈大龙,张春杰,等. 双机器人协调控制系统[J]. 机器人, 1991, (3): 6-11. [128] Makris S, Michalos G, Eytan A, et al. Cooperating robots for reconfigurable assembly operations: Review and challenges[J]. Procedia CIRP, 2012, 3: 346–351. [129] Feng Z, Hu G, Sun Y, et al. An overview of collaborative robotic manipulation in multi-robot systems[J]. Annual Reviews in Control, 2020, 49: 113-127. [130] Caccavale F, Chiacchio P, Marino A, et al. Six-dof impedance control of dual-arm cooperative manipulators[J]. IEEE/ASME Transactions on Mechatronics, 2008, 13(5): 576-586. [131] Zhang Y, Zhao X, Tao B, et al. Multi-objective synchronization control for dual-robot interactive cooperation using nonlinear model predictive policy[J]. IEEE Transactions on Industrial Electronics, 2023, 70(1): 582-593. [132] Ren Y, Sosnowski S, Hirche S. Fully distributed cooperation for networked uncertain mobile manipulators[J]. IEEE Transactions on Robotics, 2020, 36(4): 984-1003. [133] 谭民,王硕,曹志强. 多机器人系统[M]. 北京: 清华大学出版社, 2005. [134] 陈瞭,肖辉. ABB工业机器人进阶编程与应用[M]. 北京: 电子工业出版社, 2022. [135] Huo L, Baron L. The self-adaptation of weights for joint-limits and singularity avoidances of functionally redundant robotic-task[J]. Robotics & Computer Integrated Manufacturing, 2011, 27(2): 367-376. [136] 张虎. 面向标定的工业机器人建模及参数辨识方法研究[硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2015. [137] Denavit J, Hartenberg R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. Journal of Applied Mechanics, 2021, 22(2): 215-221. [138] 陈俪钊. 工业机器人关节刚度与姿态对铣削加工的影响研究[硕士学位论文]. 长春: 吉林大学, 2021. [139] Whitney D E. The mathematics of coordinated control of prosthetic arms and manipulators[J]. Journal of Dynamic Systems, Measurement, and Control, 1972, 94(4): 303-309. [140] Siciliano B, Slotine J E. A general framework for managing multiple tasks in highly redundant robotic systems[C]// Proceedings of the Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments, Pisa, 1991: 1211-1216. [141] Siciliano B, Khatib O. Springer handbook of robotics[M]. Switzerland: Springer Cham, 2016. [142] Shu T, Gharaaty S, Xie W, et al. Dynamic path tracking of industrial robots with high accuracy using photogrammetry sensor[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(3): 1159-1170. [143] Slotine J J, Li W-P. Applied nonlinear control[M]. Upper Saddle River: prentice hall, 1991. [144] Russell D, Todd S. Applied accurate robotic drilling for aircraft fuselage[J]. Sae International Journal of Aerospace, 2010, 3(1): 180-186. [145] Li P, Shu T, Xie W-F, Tian W. Dynamic visual servoing of a 6-RSS parallel robot based on optical CMM[J]. Journal of Intelligent & Robotic Systems, 2021, 102(2): 40. [146] 黄水华, 江沛, 韦巍, 等. 基于四元数的机械手姿态定向控制[J]. 浙江大学学报(工学版), 2016, 50(1): 173-179, 192. [147] Ahn J-S, Chung W-J, Jung C-D. Realization of orientation interpolation of 6-axis articulated robot using quaternion[J]. Journal of Central South University, 2012, 19(12): 3407-3414. [148] Su J, Wang C-C. Complementary sliding control of non-linear systems[J]. International Journal of Control, 2002, 75(5): 360-368. [149] Beltran B, Ahmed-Ali T, Benbouzid M E H. High-order sliding-mode control of variable-speed wind turbines[J]. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3314-3321.
﹀
|
中图分类号: |
TP391
|
馆藏号: |
2023-005-0561
|
开放日期: |
2024-06-23
|