- 无标题文档

中文题名:

 新型高精度WENO格式及其应用    

姓名:

 张燕    

学号:

 BX2008001    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070102    

学科名称:

 理学 - 数学 - 计算数学    

学生类型:

 博士    

学位:

 理学博士    

入学年份:

 2020    

学校:

 南京航空航天大学    

院系:

 数学学院    

专业:

 数学    

研究方向:

 偏微分方程数值解    

第一导师姓名:

 朱君    

第一导师单位:

 理学院    

完成日期:

 2023-05-15    

答辩日期:

 2023-10-09    

外文题名:

 

New high-accuracy WENO schemes and their application

    

中文关键词:

 MUS-TWENO格式 ; MUS-WENO格式 ; TWENO-ALW格式 ; Runge-Kutta时间离散 ; Lax-Wendroff时间离散 ; 高频振荡问题 ; 双曲守恒律方程 ; 分数阶微分方程     

外文关键词:

 MUS-TWENO scheme ; MUS-WENO scheme ; TWENO-ALW schemes ; Runge-Kutta time discretization ; Lax-Wendroff time discretization ; highly oscillation problems ; hyperbolic conservation law equations ; fractional differential equations     

中文摘要:

随着航空航天领域的发展,计算流体力学(CFD)逐渐成为研究各类复杂气体流动问题的主要工具,但现有CFD数值方法的计算精度和效率仍有待提高。WENO(加权基本无震荡,Weighted Essentially Non-oscillatory)格式因其具有高阶精度和激波捕捉特性,在CFD领域高精度数值方法的研究中受到学者广泛关注。然而目前WENO类算法仍存在一些不足,比如经典WENO格式在等距模板上的线性权值容易出现负值。因此本文基于不等距模板的思想,构造了映射三角WENO(MUS-TWENO)格式、有限体积映射WENO(MUS-WENO)格式和具有自适应线性权值的三角WENO(TWENO-ALW)格式求解双曲守恒律方程,进而将现存的不等距模板WENO(US-WENO)格式和多分辨率WENO(MR-WENO)格式推广到求解分数阶微分方程。具体内容如下:

首先,设计了一种五阶有限差分映射不等距模板的三角WENO(MUS-TWENO)格式,用于求解双曲守恒律方程、高频振荡问题以及一些低密度、低压力、低能量的极端问题。MUS-TWENO格式在三个不等距模板上构造三个不等次的三角多项式,以避免所有等距模板上都存在强激波或接触间断,其复杂的线性权值可设为和为一的任意正数。为了减小三角多项式空间中线性权值和非线性权值之间的差,我们构造了一种新型映射函数和映射非线性权值。在模拟一些高频振荡问题时,即使在光滑区域的临界点附近,以及在极小的 情况下,该格式也能得到较小的数值误差,并获得最优的五阶收敛精度。大量的数值算例验证了MUS-TWENO格式可以在不引入任何保正方法的情况下可有效求解双曲守恒律方程、高频振荡问题和一些极端问题。

其次,在结构网格上设计了求解双曲守恒律方程的五阶有限体积映射不等距模板WENO(MUS-WENO)格式。新型映射WENO型空间重构是一个四次多项式与两个定义在不等距的中心或偏置空间模板上的线性多项式的凸组合。我们提出了一种新型映射函数和映射非线性权值以减小线性权值和非线性权值之间的差。MUS-WENO格式具有截断误差小、阶数精度高的特点。即使在光滑区域的临界点附近,且在极小的 情况下,该格式也能达到最优的五阶收敛精度,同时抑制强间断区域附近的虚假振荡。与经典的有限体积WENO-JS格式和映射WENO(MWENO)格式相比,MUS-WENO格式的线性权值可以取和为一的任意正数,这大大简化了格式的构造过程。同时我们构造了一种新型改进保正方法求解一些低密度、低压力或低能量的问题。大量的数值算例验证了MUS-WENO格式可以很好地求解一些非稳态问题、稳态问题和极端问题。

然后,设计了一种新型具有自适应线性权值的有限差分多阶三角WENO(TWENO-ALW)格式,用于求解双曲守恒律方程。TWENO-ALW格式只使用两个不等距空间模板上定义的信息,而不需要引入其它模板信息可实现三阶、五阶和七阶精度。这使得格式构造简单,很容易推广到任意高阶精度。同时我们提出了一种自适应线性权值过程,即两个线性权值在和为一的条件下自动调整为任意的正数。这使得线性权值更加灵活,能够适应更复杂的情况。TWENO-ALW格式可以使用更少的空间模板,以较低的计算成本实现高阶精度。大量的数值算例表明了TWENO-ALW格式可以很好地模拟双曲守恒律方程和高频振荡问题。

最后,设计了新型六阶有限差分不等距模板WENO(US-WENO6)格式和采用Lax-Wendroff时间离散的高阶有限差分多分辨率WENO(WENO-LW)格式,用于求解含有不连续解的分数阶微分方程。将阶为 的Caputo分数阶导数分解为弱奇异积分和二阶导数项,利用经典Gauss-Jacobi正交求解弱奇异积分,利用新构造的两类WENO型重构方法逼近二阶导数项。在高阶空间重构过程中,线性权值可以取和为一的任意正数。并且与Runge-Kutta时间离散法相比,Lax-Wendroff时间离散法具有更低的计算成本。数值算例表明了US-WENO6格式和WENO-LW格式良好的性能。

本文也进一步验证了基于不等距模板WENO格式的优良属性。该类格式具有灵活的线性权值,同时可以根据实际问题设计合适大小和数量的小模板,从而达到在光滑处大模板可以保持精度,在间断处小模板可以基本无振荡的目的。

外文摘要:

With the development of the aerospace field, computational fluid dynamics (CFD) has gradually become the main tool to study various complex gas flow problems, but the computational accuracy and efficiency of the existing CFD numerical methods still need to be improved. WENO (Weighted Essentially Non-oscillatory, Weighted Essentially Non-oscillatory) schemes have attracted wide attention in the research of high-accuracy numerical methods in the field of CFD because of its high order accuracy and shock wave capturing characteristics. However, there are still many shortcomings in WENO algorithms. For example, the linear weight of the classical WENO scheme on the equal-size stencils is prone to negative values. Therefore, based on the idea of unequal-size stencils, this paper constructs a mapped trigonometric WENO (MUS-TWENO) scheme, finite volume mapped WENO (MUS-WENO) scheme, and trigonometric WENO (TWENO-ALW) schemes with adaptive linear weights to solve hyperbolic conservation law equations. Then we extend the existing unequal-size template WENO (US-WENO) scheme and multi-resolution WENO (MR-WENO) scheme to solve fractional differential equations. The details are as follows:

Firstly, a fifth-order finite difference mapped unequal-sized stencils trigonometric WENO (MUS-TWENO) scheme is designed for solving hyperbolic conservation law equations, high oscillation problems, and some extreme problems containing low density, low pressure, and low energy. The MUS-TWENO scheme constructs three unequal-order trigonometric polynomials on three unequal-size stencils to avoid strong shock waves or contact discontinuities in all unequal-size stencils. Its complex linear weights can be set to any positive sum of one. To reduce the difference between linear weights and nonlinear weights in trigonometric polynomial space, we construct a new mapping function and mapped nonlinear weight. It could get smaller numerical errors and obtain optimal fifth-order convergence accuracy with a tiny even near critical points in smooth regions when simulating some highly oscillatory problems. Many numerical examples have verified that the MUS-TWENO scheme can effectively solve hyperbolic conservation law equations, high oscillation problems, and some extreme problems without introducing any positive-preserving methods.

 Secondly, a fifth-order finite volume mapped unequal-sized stencil WENO (MUS-WENO) scheme is designed to solve hyperbolic conservation law equations on structured meshes. The newly mapped WENO-type space reconstruction is a convex combination of a quartic polynomial and two linear polynomials defined on unequal-sized central or biased spatial stencils. We propose a new mapping function and mapped nonlinear weights to reduce the difference between linear weights and nonlinear weights. MUS-WENO scheme has the characteristics of small truncation error and high-order accuracy. Even near the critical point in the smooth regions, this scheme can achieve the optimal fifth-order convergence accuracy under tiny conditions, while suppressing spurious oscillations near strong discontinuities. Compared with the classical finite volume WENO-JS scheme and mapped WENO (MWENO) scheme, the linear weights of MUS-WENO scheme can be any positive number with the sum of one, which greatly simplifies the construction process of the schemes. And we construct a new modified positivity-preserving method is constructed for solving some problems with low density, low pressure, or low energy problems. Many numerical examples have verified that the MUS-WENO scheme can effectively solve some unsteady-state problems, steady-state problems, and extreme problems.

Then, a new finite difference multi-level trigonometric WENO (TWENO-ALW) scheme with adaptive linear weights is designed for solving hyperbolic conservation law equations. TWENO-ALW scheme only uses the information defined on two unequal-size space stencils and do not need to introduce other stencils information to achieve third, fifth, and seventh-order accuracy. This makes the scheme simple to construct and easy to extend to arbitrarily high-order accuracy. At the same time, we propose an adaptive linear weights process where two linear weights are automatically adjusted to any positive number under the condition of a sum of one. This makes the linear weight more flexible and can adapt to more complex situations. TWENO-ALW schemes can use fewer spatial stencils to achieve higher-order accuracy at a lower computational cost. Many numerical examples show that the TWENO-ALW scheme can well simulate hyperbolic conservation law equations and high oscillation problems.

Finally, a new sixth-order finite-difference unequal-size stencils WENO (US-WENO6) scheme and a higher-order finite-difference multi-resolution WENO (WENO-LW) schemes with Lax-Wendroff time discretization is designed to solve the fractional differential equations that may contain discontinuous solutions. The Caputo fractional derivative of order is decomposed into a weak singular integral and a second derivative term. The weak singular integrals are solved by using the classical Gauss-Jacobi quadrature, and the second derivative is approximated by using two newly constructed WENO-type reconstruction methods. In the process of high-order space reconstruction, the linear weights value can be any positive number with a sum of one. Compared with the Runge-Kutta time discretization method, the Lax-Wendroff time discretization method has a lower computational cost. Numerical examples show that the US-WENO6 scheme and WENO-LW schemes have good performance.

This article further validates the excellent properties of the WENO schemes based on unequal-size stencils. This type of schemes has flexible linear weights and can design small stencils of appropriate size and quantity according to actual problems, thus achieving the goal of maintaining accuracy in smooth areas with a large stencil and no oscillation in discontinuous areas with small stencils.

参考文献:

[1] Courant R, Isaacson E, Reeves M. On the solution of nonlinear hyperbolic differential equations by finite differences [J]. Computations Pure and Applied Mathematics, 1952, 5: 243-255.

[2] Lax P D. Hyperbolic systems of conservation laws II [J]. Communications Pure and Applied Mathematics, 1957, 10: 537-566.

[3] Godunov S, Bohachevsky I. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics [J]. Matematičeskij Sbornik, 1959, 47: 271-306.

[4] Lax P D, Wendroff B. Systems of conservation law [J]. Communications Pure and Applied Mathematics, 1960, 13: 217-237.

[5] Lax P D, Wendroff B. Difference systems for hyperbolic equations with high order of accuracy [J]. Communications Pure and Applied Mathematics, 1964, 17: 381-398.

[6] Van Leer B. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method [J]. Journal of Computational Physics, 1979, 32: 101-136.

[7] Harten A. High resolution schemes for hyperbolic conservation laws [J]. Journal of Computational Physics, 1983, 49: 357-393.

[8] Osher S, Chakravarthy S. High resolution schemes and the entropy condition [J]. SIAM Journal on Numerical Analysis, 1984, 21: 955-984.

[9] Osher S, Chakravarthy S. Very high order accurate TVD schemes [M]. Oscillation Theory, Computation, and Methods of Compensated Compactness. Springer. 1986: 229-274.

[10] Yee H C. Construction of explicit and implicit symmetric TVD schemes and their applications [J]. Journal of Computational Physics, 1987, 68: 151-179.

[11] Tadmor E. Convenient total variation diminishing conditions for nonlinear difference schemes [J]. SIAM Journal on Numerical Analysis, 1988, 25: 1002-1014.

[12] Shu C-W. TVB Uniformly high-order schemes for conservation laws [J]. Mathematics of Computation, 1987, 49: 105-121.

[13] Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatory schemes III [J]. Journal of Computational Physics, 1987, 71: 231-303.

[14] Rogerson A M, Meiburg E. A numerical study of the convergence properties of ENO schemes [J]. Journal of Scientific Computing, 1990, 5: 151-167.

[15] Liu X, Osher S, Chan T. Weighted essentially non-oscillatory schemes [J]. Journal of Computational Physics, 1994, 115: 200-212.

[16] Jiang G, Shu C-W. Efficient implementation of weighted ENO schemes [J]. Journal of Computational Physics, 1996, 126: 202-228.

[17] Hu C, Shu C-W. Weighted essentially non-oscillatory schemes on triangular meshes [J]. Journal of Computational Physics, 1999, 150: 97-127.

[18] Levy D, Puppo G, Russo G. Central WENO schemes for hyperbolic systems of conservation laws [J]. Mathematical Modelling and Numerical Analysis, 1999, 33: 547-571.

[19] Levy D, Puppo G, Russo G. Compact central WENO schemes for multidimensional conservation laws [J]. SIAM Journal on Scientific Computing, 2000, 22: 656-672.

[20] Levy D, Puppo G, Russo G. A third order central WENO scheme for 2D conservation laws [J]. Applied Numerical Mathematics, 2000, 33: 415-421.

[21] Levy D, Puppo G, Russo G. A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws [J]. SIAM Journal on Scientific Computing, 2002, 24: 480-506.

[22] Henrick A K, Aslam T D, Powers J M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points [J]. Journal of Computational Physics, 2005, 207: 542-567.

[23] Qiu J, Shu C-W. Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: One-dimensional case [J]. Journal of Computational Physics, 2004, 193: 115-135.

[24] Qiu J, Shu C-W. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case [J]. Computers & Fluids, 2005, 34: 642-663.

[25] Qiu J, Shu C-W. Hermite WENO schemes for Hamilton–Jacobi equations [J]. Journal of Computational Physics, 2005, 204: 82-99.

[26] Tao Z, Li F, Qiu J. High-order central Hermite WENO schemes on staggered meshes for hyperbolic conservation laws [J]. Journal of Computational Physics, 2015, 281: 148-176.

[27] Liu H, Qiu J. Finite difference Hermite WENO schemes for conservation laws [J]. Journal of Scientific Computing, 2015, 63: 548-572.

[28] Liu H, Qiu J. Finite difference Hermite WENO schemes for conservation laws, II: An alternative approach [J]. Journal of Scientific Computing, 2016, 66: 598-624.

[29] Ghosh D, Baeder J D. Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws [J]. SIAM Journal on Scientific Computing, 2012, 34: 1678-1706.

[30] Semplice M, Coco A, Russo G. Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction [J]. Journal of Scientific Computing, 2016, 66: 692-724.

[31] Naumann A, Kolb O, Semplice M. On a third order CWENO boundary treatment with application to networks of hyperbolic conservation laws [J]. Applied Mathematics and Computation, 2018, 325: 252-270.

[32] Shi Y, Guo Y. A fifth order alternative Compact-WENO finite difference scheme for compressible Euler equations [J]. Journal of Computational Physics, 2019, 397: 108873.

[33] Shen Y, Zha G. A robust seventh-order WENO scheme and its applications [R]. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2008.

[34] Hu G, Li R, Tang T. A robust WENO type finite volume solver for steady Euler equations on unstructured grids [J]. Communications in Computational Physics, 2011, 9: 627-648.

[35] Liu Y, Zhang Y. A robust reconstruction for unstructured WENO schemes [J]. Journal of Scientific Computing, 2013, 54: 603-621.

[36] Shu C-W, Osher S. Efficient implementation of essentially non-oscillatory shockcapturing schemes [J]. Journal of Computational Physics, 1988, 77: 439-471.

[37] Shu C-W. Total-variation-diminishing time discretizations [J]. SIAM Journal on Scientific and Statistical Computing, 1988, 9: 1073-1084.

[38] Ruuth S J, Spiteri R J. Two barriers on strong-stability-preserving time discretization methods [J]. Journal of Scientific Computing, 2002, 17: 211-220.

[39] Lax P D, Wendroff B. Systems of conservation laws [J]. Communications on Pure and Applied Mathematics, 1960, 13: 217-237.

[40] Alfaro M, Droniou J. General fractal conservation laws arising from a model of detonations in gases [J]. Applied Mathematics Research Express, 2012, 2012: 127-151.

[41] Fowler A C. Evolution equations for dunes and drumlins [J]. Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-Matematicas, 2002, 96: 377-387.

[42] Alibaud N, Azerad P, Isebe D. A non-monotone conservation law for dune morphodynamics [J]. Differential and Integral Equations, 2007, 23: 155-188.

[43] Azerad P, Bouharguane A, Crouzet J-F. Simultaneous denoising and enhancement of signals by a fractal conservation law [J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17: 867-881.

[44] Liu F, Anh V, Turner I. Numerical solution of the space fractional Fokker–Planck equation [J]. Journal of Computational and Applied Mathematics, 2004, 166: 209-219.

[45] Meerschaert M M, Tadjeran C. Finite difference approximations for fractional advection–dispersion flow equations [J]. Journal of Computational and Applied Mathematics, 2004, 72: 65-77.

[46] Ervin V, Roop J P. Variational formulation for the stationary fractional advection dispersion equation [J]. Numerical Methods for Partial Differential Equations, 2006, 22: 558-576.

[47] Deng W H. Finite element method for the space and time fractional Fokker–Planck equation [J]. SIAM Journal on Numerical Analysis, 2008, 47: 204-226.

[48] Li X, Xu C. Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation [J]. Communications in Computational Physics, 2010, 8: 1016-1051.

[49] Deng W, Du S, Wu Y. High order finite difference WENO schemes for fractional differential equations [J]. Applied Mathematics Letters, 2013, 26: 362-366.

[50] Liu Y, Shu C-W, Zhang M P. High order finite difference weno schemes for nonlinear degenerate parabolic equations [J]. SIAM Journal on Scientific Computing, 2011, 33: 939-965.

[51] Balsara D S, Shu C-W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy [J]. Journal of Computational Physics, 2000, 160: 405-452.

[52] Wang Z, Chen R. Optimized weighted essentially non-oscillatory schemes for linear waves with discontinuity [J]. Journal of Computational Physics, 2001, 174: 381-404.

[53] Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction [J]. Journal of Computational Physics, 2002, 178: 81-117.

[54] Titarev V A, Toro E F. Finite-volume WENO schemes for three-dimensional conservation laws [J]. Journal of Computational Physics, 2004, 201: 238-260.

[55] Bryson S, Levy D. Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton–Jacobi equations [J]. Applied Numerical Mathematics, 2006, 56: 1211-24.

[56] Serna S, Marquina A. Power-ENO methods: A fifth-order accurate weighted power ENO method [J]. Journal of Computational Physics, 2004, 194: 632-58.

[57] Serna S, Qian J. Fifth order weighted power-ENO methods for Hamilton–Jacobi equations [J]. Journal of Scientific Computing, 2006, 29: 57-81.

[58] Kurganov A, Noelle S, Petrova G. Semi-discrete central-upwind schemesfor hyperbolic conservation laws and Hamilton–Jacobi equations [J]. SIAM Journal on Scientific Computing, 2001, 23: 707-40.

[59] Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws [J]. Journal of Computational Physics, 2008, 227: 3191-3211.

[60] Feng H, Hu F, Wang R. A new mapped weighted essentially non-oscillatory scheme [J]. Journal of Scientific Computing, 2012, 51: 449-73.

[61] Feng H, Huang C, Wang R. An improved mapped weighted essentially non-oscillatory scheme [J]. Applied Mathematics and Computation, 2014, 232: 453-68.

[62] Gao Z, Don W S. Mapped hybrid central-WENO finite difference scheme for detonation waves simulations [J]. Journal of Scientific Computing, 2013, 55: 351-71.

[63] Wang R, Feng H, Huang C. A new mapped weighted essentially non-oscillatory method using rational mapping function [J]. Journal of Scientific Computing, 2016, 67: 540-80.

[64] Vevek U S, Zang B, New T H. A new mapped WENO method for hyperbolic problems [C]. ICCFD10, Barcelona, Spain, 2018.

[65] Hong Z, Ye Z, Meng X. A mapping-function-free WENO-M scheme with low computational cost [J]. Journal of Computational Physics, 2020, 405: 109145.

[66] Zhang X, Yan C, Qu F. An efficient smoothness indicator mapped WENO scheme for hyperbolic conservation laws [J]. Computers and Fluids, 2022, 240: 105421.

[67] Shi J, Hu C, Shu C-W. A technique of treating negative weights in WENO schemes [J]. Journal of Computational Physics, 2002, 175: 108-127.

[68] Zhu J, Qiu J. A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws [J]. Journal of Computational Physics, 2016, 318: 110-21.

[69] Zhu J, Qiu J. A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations [J]. Numerical Methods for Partial Differential Equations, 2017, 33: 1095-1113.

[70] Zhu J, Qiu J. A new type of finite volume WENO schemes for hyperbolic conservation laws [J]. Journal of Scientific Computing, 2017, 73: 1338-1359.

[71] Zhu J, Shu C-W. A new type of multi-resolution WENO schemes with increasingly higher order of accuracy on triangular meshes [J]. Journal of Computational Physics, 2018, 375: 659-683.

[72] Einfeldt B, Munz C D, Roe P L, Sjogreen B. On Godunov-type methods near low densities, Journal of Computational Physics, 1991, 92: 273-295.

[73] Zhang X, Shu C-W. On maximum-principle-satisfying high order schemes for scalar conservation laws [J]. Journal of Computational Physics, 2010, 229: 3091-3120.

[74] Zhang X, Shu C-W. On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes [J]. Journal of Computational Physics, 2010, 229: 8918-8934.

[75] Zhang X, Shu C-W. Maximum-principle-satisfying and positivity-preserving high order schemes for conservation laws: Survey and new developments [J]. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences, 2011, 467: 2752-2776.

[76] Zhang X, Shu C-W. Positivity-preserving high order finite difference WENO schemes for compressible Euler equations [J]. Journal of Computational Physics, 2012, 231: 2245-2258.

[77] Hu X, Adams N, Shu C-W. Positivity-preserving method for high-order conservative schemes solving compressible Euler equations [J]. Journal of Computational Physics, 2013, 242: 169-180.

[78] Guo Y, Xiong T, Shi Y. A positivity-preserving high order finite volume compact-WENO scheme for compressible Euler equations [J]. Journal of Computational Physics, 2014, 274: 505-523.

[79] Xiong T, Qiu J-M, Xu Z. Parametrized positivity preserving flux limiters for the high order finite difference WENO scheme solving compressible Euler equations [J]. Journal of Scientific Computing, 2016, 67: 1066–1088.

[80] Zhang X. On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations [J]. Journal of Computational Physics, 2017, 328: 301-343.

[81] Fan C, Zhang X, Qiu J. Positivity-preserving high order finite volume hybrid Hermite WENO schemes for compressible Navier-Stokes equations [J]. Journal of Computational Physics, 2021, 445: 110596.

[82] Fan C, Zhang X, Qiu J. Positivity-preserving high order finite difference WENO schemes for compressible Navier-Stokes equations [J]. Journal of Computational Physics, 2022, 467: 111446.

[83] Baron W. Zur trigonometrischen interpolation [J]. Computing, 1976, 16: 319-28.

[84] Muhlbach G. The general recurrence relation for divided differences and the general Newton-interpolation-algorithm with applications to trigonometric interpolation [J]. Numerische Mathematik, 1979, 32: 393-408.

[85] Muhlbach G. A recurrence formula for generalized divided differences and some applications [J]. Journal of Approximation Theory, 1973, 9: 165-172.

[86] Muhlbach G. Newton-und-Hermite-interpolation mit Cebysev-systemen [J]. Zamm-Journal of Applied Mathematics and Mechanics, 1974, 54: 541-550.

[87] Muhlbach G. The general Neville-Aitken-algorithm and some applications [J]. Numerische Mathematik, 1978, 31: 97-110.

[88] Christofi S. The study of building blocks for essentially non-oscillatory (ENO) schemes [D]. Division of Applied Mathematics, Brown University, 1996.

[89] Yuan L. and Shu C-W. Discontinuous Galerkin method based on non-polynomial approximation spaces. Journal of Computation Physics, 2006, 218: 295-323.

[90] Zhu J, Qiu J. Trigonometric WENO shemes for hyperbolic conservation laws and highly oscillatory problems [J]. Communications in Computational Physics, 2010, 8: 1242–1263.

[91] Zhu J, Qiu J. WENO schemes and their application as limiters for RKDG methods based on trigonometric approximation spaces [J]. Journal of Scientific Computing, 2013, 55: 606-644.

[92] Wang Y, Zhu J, Xiong L. A new fifth-order trigonometric WENO scheme for hyperbolic conservation laws and highly oscillatory problems [J]. Advances in Applied Mathematics and Mechanics, 2019, 11: 1114-1135.

[93] Wang Y, Zhu J. A new type of increasingly high-order multi-resolution trigonometric WENO schemes for hyperbolic conservation laws and highly oscillatory problems [J]. Computers and Fluids, 2020, 200: 104448.

[94] Abedian R, Adibi H, Dehghan M. A high-order weighted essentially non-oscillatory (WENO) finite difference scheme for nonlinear degenerate parabolic equations [J]. Computer Physics Communications, 2013, 184: 1874-1888.

[95] Arbogast T, Huang C, Zhao X. Finite volume WENO schemes for nonlinear parabolic problems with degenerate diffusion on non-uniform meshes [J]. Journal of Computational Physics, 2019, 399: 108921.

[96] Jiang Y. High order finite difference multi-resolution WENO method for nonlinear degenerate parabolic equations [J]. Journal of Scientific Computing, 2021, 86: 16.

[97] Abedian R. A new high-order weighted essentially non-oscillatory scheme for non-linear degenerate parabolic equations [J]. Numerical Methods for Partial Differential Equations, 2021, 37: 1317-1343.

[98] Korobeinikov V P. Problems of Point-Blast Theory. American Institute of Physics [C], New York, 1991.

[99] Jiang Y, Shu C-W, Zhang M. An alternative formulation of finite difference weighted ENO schemes with Lax–Wendroff time discretization for conservation laws [J]. SIAM Journal on Scientific Computing, 2013, 35: A1137-A1160.

[100] Shu C-W. High order weighted essentially non-oscillatory schemes for convection dominated problems [J]. SIAM Review, 2009, 51: 82-126.

[101] Shu C-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws [M]. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Springer, 1998: 325-432.

[102] Shu C-W. High order weighted essentially nonoscillatory schemes for convection dominated problems [J]. SIAM Review, 2009, 51: 82-126.

[103] Balsara D S, Shu C-W. Monotonicity preserving weighted essentially nonoscillatory schemes with increasingly high order of accuracy [J]. Journal of Computational Physics, 2000, 160: 405-452.

[104] Sedov L I. Similarity and Dimensional Methods in Mechanics [C]. New York: Academic Press, 1959.

[105] Linde T, Roe P L. Robust Euler codes [C]. AIAA, Reston: 13th Computational Fluid Dynamics Conference, 1997:83-93.

[106] Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow with strong shocks [J]. Journal of Computational Physics, 1984, 54: 115-173.

[107] Zhang Y, Shu C-W. Third order WENO scheme on three dimensional tetrahedral meshes [J]. Communications in Computational Physics, 2009, 5: 836-848.

[108] Zhou T, Li Y, Shu C-W. Numerical comparison of WENO finite volume and Runge-Kutta discontinuous Galerkin methods [J]. Journal of Scientific Computing, 2001, 16: 145-71.

[109] Zhu J, Qiu J. A new type of finite volume WENO schemes for hyperbolic conservation laws [J]. Journal of Scientific Computing, 2017, 73: 1338-1359.

[110] Gerolymos G, Sénéchal D, Vallet I. Very-high-order WENO schemes [J]. Journal of Computational Physics, 2009, 228: 8481-8524.

[111] Balsara D S, Garain S, Shu C-W. An efficient class of WENO schemes with adaptive order [J]. Journal of Computational Physics, 2016, 326: 780-804.

[112] Balsara D S, Garain S, Florinski V, Boscheri W. An efficient class of WENO schemes with adaptive order for unstructured meshes [J]. Journal of Computational Physics, 2020, 404: 109062.

[113] Podlubny I. Fractional Differential Equations [M], Academic Press, New York, 1999.

[114] Dumbser M, Kaser M. Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems [J]. Journal of Computational Physics, 2007, 221: 693-723.

[115] Zhong X, Shu C-W. A simple weighted essentially nonoscilatory limiter for Runge-Kutta discontinuous Galerkin methods [J]. Journal of Computational Physics, 2013, 232: 397-415.

[116] Qiu J, Shu C-W. Finite difference WENO schemes with Lax-Wendroff-type time discretizations [J]. SIAM Journal on Scientific Computing, 2003, 24: 2185-2198.

[117] Zhu J, Shu C-W, Qiu J. High-order Runge-Kutta discontinuous Galerkin methods with multi-resolution WENO limiters for solving steady-state problems [J]. Applied Numerical Mathematics, 2021, 165: 482-499.

[118] Krivodonova L, Xin J, Remacle J-F, et al. Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws [J]. Applied Numerical Mathematics, 2004, 48: 323-338.

中图分类号:

 O241.8    

馆藏号:

 2023-008-0044    

开放日期:

 2024-06-01    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式