中文题名: |
先进高负荷风扇/压气机非定常数值计算技术及流动机理研究
|
姓名: |
薛岩
|
学号: |
BX1402510
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
082502
|
学科名称: |
工学 - 航空宇航科学与技术 - 航空宇航推进理论与工程
|
学生类型: |
博士
|
学位: |
工学博士
|
入学年份: |
2014
|
学校: |
南京航空航天大学
|
院系: |
能源与动力学院
|
专业: |
航空宇航科学与技术
|
研究方向: |
叶轮机气动力学
|
第一导师姓名: |
葛宁
|
第一导师单位: |
能源与动力学院
|
完成日期: |
2021-12-06
|
答辩日期: |
2022-07-02
|
外文题名: |
Investigation of Unsteady Numerical Simulation Technique and Flow Mechanism for Advanced Highly-Loaded Fan/Compressor
|
中文关键词: |
轴流风扇/压气机 ; 叶尖泄漏流 ; 定常/非定常数值模拟 ; 涡系结构模型 ; RANS/LES组合模拟
|
外文关键词: |
axial flow fan/compressor ; tip leakage flow ; steady/unsteady numerical simulation ; vortex structure model ; hybrid RANS/LES simulation
|
中文摘要: |
︿
高负荷跨声速轴流风扇/压气机内流结构的复杂性,特别是转子叶尖区流动状况通常影响决定着整个压气机的流动稳定性。全面弄清转子通道内复杂二次流结构的形成、类型、空间分布、相互作用机制及其对总体气动性能的影响规律等,有利于为前期的气动设计优化和后期的流动分析与控制提供详实的机理性研究基础。CFD数值模拟技术通常比实验测量能够更有效地获得全时空的流场数据信息,能够更加清晰地观察到全通道流场结构的全景物理图像,可以任意提取和处理任何空间位置处的流场信息,它对于机理性研究具有天然的独特优势。本文基于本课题组自主研制的叶轮机高精度数值模拟并行计算程序—NUAA Turbo 2.0,对跨声速轴流孤立转子和单级压气机详细开展了相关定常和非定常数值模拟研究。
本文首先采用定常数值模拟方法,详细研究了不同间隙尺寸和间隙模化方式在两种不同负荷水平压气机转子Rotor 67和Rotor 37中对总体气动性能、流场结构以及叶尖间隙处流动特性等的影响规律。研究结果表明:与“周期性”间隙相比,“网格化”间隙对流量、效率、出口绝对气流角的预测更佳,并且对间隙尺寸和间隙模化效应表现出更强的敏感性;同时,“网格化”间隙更加不易于形成明显的泄漏涡诱导涡结构,它所预测的泄漏涡轨迹更加靠近相邻叶片压力面侧上游位置;与Rotor 67相比,Rotor 37的间隙模化效应和工况变化对叶尖泄漏涡轨迹的影响表现出低敏感性。
通过对跨声速轴流压气机转子的定常数值模拟研究,本文提出了一个典型的跨声速轴流压气机转子通道涡系结构模型、叶尖涡系结构模型以及激波/泄漏涡相互作用模型。同时,将一种旋涡稳定性理论分析方法应用于真实跨声速压气机转子中的激波诱导泄漏涡流动稳定性分析,它的分析结果与传统分析方法取得了很好的一致性,但它在揭示叶尖泄漏涡流动稳定性的影响因素方面具有明显独特优势。关于转子轮盘与静止轮毂之间轮毂泄漏流的影响效应研究,本文详细探讨了轮毂泄漏流流量和周向速度效应对压气机总体气动性能和流动结构的影响规律,深刻地揭示出上述两种轮毂泄漏流效应通过影响轮毂壁面流动结构空间分布来对气动性能产生重大负面影响的内在作用机制。
从非定常数值模拟研究出发,作者在NUAA Turbo 2.0核心求解器中开发了DES97、DDES和IDDES三种DES类RANS/LES组合模拟方法,本文利用它们对Rotor 67和Rotor 37转子叶尖区叶尖泄漏涡脉动特征频率开展了详细的对比研究。研究结果显示:相同网格分辨率条件下,DDES和IDDES两种模式比其它模式能更快进入非定常周期性数值收敛状态,两种模式预测效果具有很强相似性,但从Rotor 37在NS工况下的预测效果来看IDDES模式要优于DDES模式。然而,针对单级压气机定常和非定常数值模拟研究,一方面定常数值模拟结果再次检验了转子叶尖涡模型和旋涡稳定性理论分析方法的可靠性,另一方面通过转/静非定常计算详细分析了转子叶尖区和静子通道内三个特征展向高度位置处静压脉动特征频率的空间分布特征,并且总结了转/静非定常效应在压气机三个特征展向高度位置处所表现出的不同非定常现象特征类型。
﹀
|
外文摘要: |
︿
The complexity of the internal flow structure in a highly-loaded transonic axial fan/compressor, especially the flow status in the rotor tip region, usually affects and determines the flow stability of the whole compressor. Comprehensive understandings of the formation, type, spatial distribution, interaction mechanism and its influence on the overall aerodynamic performance of the complex secondary flow structure in the rotor passage, which are helpful to provide a detailed mechanical research basis for aerodynamic design optimization in the early stage and flow analysis and control in the later stage. CFD numerical simulation technology is usually more effective than experimental measurement to obtain the whole space-time flow field data information, and it can more clearly observe the panoramic physical image of flow field structure in the whole passage, the flow field information at any spatial position can be extracted and processed arbitrarily, it has natural and unique advantages for the study of mechanism. Based on the high-precision core solver with parallel computation version—NUAA Turbo 2.0, which is developed by our research group and specially designed for turbomachinery, the steady and unsteady numerical simulations of transonic axial flow isolated rotor and single-stage compressor are carried out in detail.
Firstly, the effects of different tip cleaance sizes and modeling methods on the overall aerodynamic performance, flow field structure and the tip leakage flow characteristic, which are studied in detail by using the steady-state numerical simulation method, mainly for two compressor rotors Rotor 67 and Rotor 37 with different load levels. The results show that : compared with the "periodic" gap, the "gridded" gap has better prediction of mass flow rate, efficiency and exit absolute flow angle, and is more sensitive to the gap size and gap modeling effects. Meanwhile, the "gridded" gap is is more difficult to form an obvious TLV-IV structure, and the predicted leakage vortex trajectory is closer to the upstream position of the pressure surface side of adjacent blade; compared with Rotor 67, the change of tip leakage vortex trajectory for Rotor 37 has low sensitivities to the gap modeling effect and operating condition variation.
Through the steady-state numerical simulation of transonic axial compressor rotor, a relatively typical rotor passage vortex model, blade tip vortex model and shock / leakage vortex interaction model in a typical transonic axial flow compressor are constructed and proposed in this paper. Meanwhile, a theoretical analysis method of vortex stability is introduced and successfully applied to the analysis of shock-induced leakage flow stability in a real transonic compressor rotor. Its analysis results are in good agreement with those of traditional analysis methods, but it has obvious unique advantages in revealing the influencing factors of tip leakage vortex stability. In this paper, the effects of mass flow rate and circumferential velocity of hub leakage flow on the overall aerodynamic performance and flow structure for the compressor are discussed in detail. It deeply reveals the internal mechanism that the above two hub leakage flow effects have a significant negative impact on aerodynamic performance by affecting the spatial distribution of hub wall flow structure.
With regard to unsteady numerical simulation research, the author developed three different hybrid RANS/LES simulation methods (DES97、DDES、IDDES) and embedded them into the NUAA Turbo 2.0 core solver. Then, this paper uses them to detailedly compare and study the characteristic frequency of tip leakage vortex pulsation in the tip region of Rotor 67 and Rotor 37. The results show that : under the same grid resolution, DDES and IDDES modes can enter the unsteady periodic numerical convergence state faster than other modes. The prediction effects of the two modes are very similar, IDDES mode is better than DDES mode from the prediction effect of Rotor 37 under NS condition. However, for the steady and unsteady numerical simulation of single-stage compressor, on the one hand, the steady numerical simulation results verify the reliability of the rotor tip vortex model and the theoretical analysis method of vortex stability; On the other hand, through the rotor/stator unsteady simulation, the spatial distribution characteristics of the characteristic frequency of static pressure pulsation both in the rotor tip region and at three characteristic spanwise positions of stator passage are analyzed in detail, and the different unsteady phenomenon types at three characteristic spanwise positions of the compressor are summarized.
﹀
|
参考文献: |
︿
[1] 方昌德.航空发动机的发展前景[J].航空发动机,30(1):1-4,2004. [2] 方昌德.航空发动机百年回顾[J].燃气涡轮试验与研究,16(4):1-5,2003. [3] Michael T. Tong,Scott M. Jones,et al.A probabilistic assessment of NASA ultra-efficient engine technologies for a large subsonic transport[R]. ASME GT2004-54385, 2004. [4] Michael T. Tong,Scott M. Jones.An updated assessment of NASA ultra-efficient engine technologies[R]. ISABE Paper 2005-1163, 2005. [5] 刘大响.航空动力发展的历史性机遇[J].航空发动机,31(2):1-3,2005. [6] Harvey Maclin, Clay Haubert. Fifty years down-Fifty years to go[R]. AIAA Paper No 2003-2788, 2003. [7] 杨荣菲. 轴流压气机非定常流确定叶排参数的近似模型研究[D],北京:北京航空航天大学, 2010. [8] 陈懋章.风扇/压气机技术发展及对今后工作的建议[J].航空动力学报,17(1):12-15,2002. [9] Johnson I,Bullock R,et al. Aerodynamic design of axial-flow compressor. NASA SP-36, 1965. [10] 航空发动机设计手册编委会 第八册—压气机.北京:航空工业出版社,2000. [11] 卢新根. 轴流压气机内部流动失稳及其被动控制策略研究[D],西安:西北工业大学, 2007. [12] Van Zante, Strazisar, Wood, et al. Recommendations for achieving accurate numerical simulation of tip clearance flows in transonic compressor rotors[J]. Journal of Turbomachinery, 122:733-742, 2000. [13] Gupta Anurag, Khalid S.Arif, McNulty G.Scott, et al. Prediction of low speed compressor rotor flowfields with large tip clearances. ASME GT2003-38637, 2003. [14] R, V, Chima. Calculation of tip clearance effects in a transonic compressor rotor[J]. Journal of Turbomachinery, 1998. [15] 邓向阳.压气机叶顶间隙流的数值模拟研究[D].中国科学院研究生院(工程热物理研究所),2006. [16] Glanville, Jonathan P. Investigation into core compressor tip leakage modelling techniques using a 3D viscous solver[C]. ASME Paper 2001-GT-0336, 2001. [17] Gerolymos G A , Neubauer J , Sharma V C , et al. Improved Prediction of Turbomachinery Flows Using Near-Wall Reynolds-Stress Model[J]. Journal of Turbomachinery, 124(4):86-98, 2001. [18] Gong H L , Park J I , Baek J H. Performance assessment of turbulence models for the quantitative prediction of tip leakage flow in turbomachines[C]. ASME Paper 2004-GT-53403, 2004. [19] Spotts, N., and X. Gao. A Comparative study of turbulence models for RANS simulations of Rotor 67.?AIAA Aerospace Sciences Meeting, 2016. [20] Jing-Jun Z, Da K, Hua-Wei L U, et al. Study on three-dimensional steady vortex structure in a highly loaded compressor cascade[J]. Journal of Propulsion Technology, 36(06):852-863, 2015. [21] J. H. Horlock, J. F. Lewis, P.M.E. Percival, et al. Wall stall in compressor cascade[J]. ASME Journal of Basic Engineering, 1966. [22] Zhang Yongjun, Wang Huishe, Xu Jianzhong, et al. Study on topology and vortex structure in a diffusion cascade[J]. Science in China Series E, 52(8):2305-2315, 2009. [23] Kang S. Investigation on the three-dimension flow within a compressor cascade with and without tip clearance[D]. Dissertation of Doctoral degree. Brussel:Vrije University Brussel,1993. [24] M. Inoue, M. Kuroumaru. Three-dimensional structure and decay of vortices behind an aerial flow rotation blade row[J]. ASME 83-GT-69, 1983. [25] Lakshminarayana B., Pouagare M., and Davino R.. Three-dimensional flow field in the tip region of a compressor rotor passage—Part II:turbulence properties[C]. ASME Paper 82-GT-274, 1982. [26] 于贤君,刘宝杰,蒋浩康.压气机转子尖部三维复杂流动I—实验与理论研究[J].航空学报,31(1):48-57,2010. [27] Du Juan, Lin Feng, Chen Jingyi, et al. Flow structures in the tip region for a transonic compressor rotor[J]. Journal of Turbomachinery, 135(3):1-11, 2013. [28] Wisler D.C.. Advanced compressor and fan systems. Lecture notes from UTSI short course aero propulsion, 1987. [29] 王如根,胡加国,余超,等.跨声速压气机转子的二次流旋涡结构[J].推进技术,36(4):504-512,2015. [30] Wisler D.C.. Loss reduction in axial-flow compressors through low-speed model testing[J]. ASME Journal of Engineering for Gas Turbines & Powers, 107(2):354-363, 1984. [31] Baghdadi S. Modeling tip clearance effects in multistage axial compressors[J]. Journal of Turbomachinery, 118(4):613-843, 1996. [32] Smith L H. The effect of tip clearance on the peak pressure rise of axial-flow fans and compressors[C]. ASME Symposium on Stall, 1958. [33] Inoue M. Behavior of tip leakage flow behind an axial compressor rotor[J]. ASME Journal of Engineering for Gas Turbines & Powers, 108(1):7-14, 1986. [34] Freeman C. The effect of tip clearance flow on compressor stability and engine performance[R]. Von Karman Institute for Fluid Dynamics Lecture Series, 1985. [35] Saathoff H, Stark U.. Tip clearance flow induced endwall boundary layer separation in a single-stage axial-flow low-speed compressor[R]. ASME Paper 2000-GT-0501, 2000. [36] Brandt H, Fottner L, Saathoff H, et al. Effects of the inlet flow conditions on the tip clearance flow of an isolated compressor rotor[R]. ASME Paper 2002-GT-30639, 2002. [37] Hall EJ, Crook A J, Delaney R A. Aerodynamic analysis of compressor casing treatment with a 3D Navier-Stokes solver[R]. AIAA Paper AIAA-94-2796, 1994. [38] Wilke I, Kau H.P.. A numerical investigation of the influence of casing treatments on the tip leakage flow in a HPC front stage[R]. ASME Paper GT-2002-30642, 2002. [39] Shabbir A, Adamczyk J J. Flow mechanism for stall margin improvement due to circumferential casing grooves on axial compressor[R]. ASME Paper GT-2004-53903, 2004. [40] Leibovich S. Vortex stability and breakdown:survey and extension[J]. AIAA Journal, 22:192-206, 1984. [41] Hall MG. Vortex breakdown[J]. Ann Rev Fluid Mech, 4(1):195-218, 1972. [42] Sarpkaya, Turgut. Turbulent vortex breakdown[J]. Physics of Fluids, 7(10):2301-2303, 1995. [43] Turgut, Sarpkaya. On stationary and travelling vortex breakdowns[J]. Journal of Fluid Mechanics, 45(3):545-559, 1971. [44] Iraj M.Kalkhoran, Michael K.Smart. Aspects of shock wave-induced vortex breakdown[J]. Progress in Aerospace Sciences, 36:63-95, 2000. [45] Zatoloka V, Ivanyushkin AK, Nikolayev AV. Interference of vortexes with shocks in airscoops.dissipation of vortexes[J]. Fluid Mechanics,Soviet Research, 7(4):153-158, 1978. [46] Delery JM, Horowitz E, Leuchter O, Solignac J.-L.. Fundamental studies on vortex flows[J]. La Recherche Aerospatiale, 2:1-24, 1984. [47] Metwally O, Settles G. Horstman C. An experimental study of shock wave/vortex interaction. AIAA Paper 89-0082, 1989. [48] Cattafesta LN, Settles GS. Experiments on shock/vortex interaction. AIAA Paper 92-0315, 1992. [49] Rizzetta DP. Numerical investigation of supersonic wing-tip vortices. AIAA Journal 1996;34(6):1203-1208. [50] Kandil OA, Kandil HA. Supersonic quasi-axisymmetric vortex breakdown. AIAA Paper No.91-3311, 1991. [51] Kalkhoran IM, Sforza PM, Wang FY. Experimental study of shock-vortex interaction in a Mach 3 stream. AIAA Paper No.91-3270-CP, 1991. [52] Smart MK, Kalkhoran IM. The effect of shock strength on oblique shock wave/vortex interaction[J]. AIAA Journal, 33(11):2137-2143, 1995. [53] Smart M K, Kalkhoran I M, Popovic S. Some aspects of streamwise vortex behavior during oblique shock wave/vortex interaction[J]. Shock Waves, 8(4):243-255, 1998. [54] Smart MK, Kalkhoran IM, Popovic S. Planar laser-sheet visualization of oblique shock wave/vortex interaction[J]. Shock Waves, 8(4):243-255, 1998. [55] Rizzetta DP. Numerical simulation of oblique shock wave/vortex interaction[J]. AIAA Journal, 33(8):1441-1446, 1995. [56] 张卓勋,吴艳辉,楚武利,等.激波/泄漏涡相互干扰对跨声压气机流动稳定性的影响[J].航空动力学报,25(7):1615-1621,2010. [57] Yamada K,Furukawa M,et al. Unsteady three-dimensional flow phenomena due to breakdown of tip leakage vortex in a transonic axial compressor rotor. ASME Turbo Expo: Power for Land, Sea, & Air, 2004. [58] K.Yamada, K.Funazaki and M.Furukawa. The behavior of tip clearance flow at near-stall condition in a transonic axial compressor rotor. ASME Turbo Expo 2007:Power for Land,Sea and Air 2007. [59] Hoeger M, Fritsch G, Bauer D. Numerical simulation of the shock-tip leakage vortex interaction in a HPC front stage[J]. Journal of Turbomachinery, 121(3):456-468, 1999. [60] 张涵信,邓小刚.三维定常分离流和涡运动的定性分析研究[J].空气动力学学报, (01):8-20,1992. [61] McDougall N M, Cumpsty N A, Hynes T P. Stall inception in axial compressors[J]. ASME Journal of Turbomachinery, 112:116-125, 1990. [62] Garnier V H, Epstein A H, Greitzer E M. Rotating waves as a stall inception indication in axial compresssors[J]. ASME Journal of Turbomachinery, 113:290-301, 1991. [63] Paduano J D, Epstein A H, Valavani L, et al. Active control of rotating stall in a low-speed axial compressors[J]. ASME Journal of Turbomachinery, 115:48-56, 1993. [64] Day I J. Active suppression of rotating stall and surge in axial compressors[J]. ASME Journal of Turbomachinery, 115:40-47, 1993. [65] Day I J. Stall inception in axial flow compressors[J]. ASME Journal of Turbomachinery, 115:1-9, 1993. [66] Chaoqun Nie. An experimental investigation on different radial loading distribution and patterns of stall inception in a single-stage low-speed axial compressor[R]. ASME Paper 2003-GT-38090, 2003. [67] 童志庭. 轴流压气机中叶尖泄漏涡、失速先兆、叶尖微喷气非定常关联性的试验研究[D],北京:中国科学院工程热物理研究所,2006. [68] Masahiro Inoue, Motoo kuronmarn, Shinichi Yoshida, et al. Effect of tip clearance on stall evolution process in a low-speed axial compressor stage[R]. ASME Paper GT2004-53354, 2004. [69] Masahiro Inoue, Motoo kuronmarn, Shinichi Yoshida, et al. Short and long length-scale isturbances leading to rotating stall in an axial compressor stage with different stator/rotor gaps[J]. ASME Journal of Turbomachinery, 124:376-383, 2002. [70] Vo H D, Tan C S, Greitzer E M. Criteria for spike initiated rotating stall[J]. ASME Journal of Turbomachinery, 130:1-8, 2008. [71] Schlechtriem S, Lotzerich M. Breakdown of tip leakage vortices in compressors at flow conditions close to stall[R]. ASME GT1997-41, 1997. [72] Lin F, Zhang J, Chen J, et al. Flow structure of short length scale disturbance in an axial compressor[J]. Journal of Propulsion & Power,24(6):1301-1308, 2008. [73] Mailach R, Lehmann I, Vogeler K. Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex[R]. ASME Paper GT-2000-506, 2000. [74] Marz J, Hah C, Neise W. An experimental and numerical investigation into the mechanisms of rotating instability[R]. ASME Paper 2001-GT-0536, 2001. [75] Hoffman W H, Ballman J. Some aspect of tip vortex behavior in a transonic turbocompressor[R]. ISABE Paper 2003-1223, 2003. [76] Zhang H W. A study on the mechanism of tip leakage flow unsteadiness in an isolated compressor rotor[C]. ASME GT2006-91123, 2006. [77] 杜娟,林峰,张宏武,等.某跨音速轴流压气机转子叶顶泄漏流的非定常特征[J].工程热物理学报,2009,030(005):749-752. [78] Bergner J, Kinzel M, Schiffer H P, et al. Short length-scale rotating stall inception in a transonic axial compressor: experimental investigation[C]. Asme Turbo Expo: Power for Land, Sea, & Air. 131-140, 2006. [79] Bie C, Muller M W, Schiffer H-P, Zscherp C. Unsteady pressure measurement in a single stage axial transonic compressor near the stability limit[C]. ASME GT2008-50245, 2008. [80] 耿少娟. 压气机叶顶间隙泄漏流对微喷气的非定常响应机制与扩稳效果研究[D],北京:中国科学院工程热物理研究所,2007. [81] Maillach R, Lehmann I, Vogeler K. Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex[J]. Journal of Turbomachinery, 123(3):461-475, 2001. [82] Maillach R, Sauer H, Vogeler K. The periodical interaction of the tip clearance flow in the blade rows of axial compressor[C]. ASME GT2001-0299, 2001. [83] Furukawa M, Saiki K, Yamada K, et al. Unsteady flow behavior due to breakdown of tip leakage vortex in an axial compressor rotor at near-stall condition[R]. ASME Paper 2000-GT-666, 2000. [84] 杜娟.跨音压气机/风扇转子叶顶泄漏流动的非定常机制研究[D].中国科学院工程热物理研究所,2010. [85] Du Juan, Lin Feng, Zhang Hongwu. Numerical investigation on the originating mechanism of unsteadiness in tip leakage flow for a transonic fan rotor[C]. ASME GT2008-51463, 2008. [86] Gorrell S E, Okiishi T H, Copenhaver W W. Stator-rotor interactions in a transonic compressor—Part 2: description of a loss-producing mechanism[J]. Journal of Turbomachinery, 125(2):1495–1503, 2003. [87] Richman M, Fleeter S. Navier-Stokes simulation of rotor-stator interactions in a transonic compressor[C]. AIAA 2002-3546, 2002. [88] Valkov T V, Tan C S. Effect of upstream rotor vortical disturbances on the time-averaged performance of axial compressor stators: Part 2--rotor tip vortex/streamwise vortex–stator blade interactions[J]. Journal of Turbomachinery, 121(3):387-397, 1999. [89] Graf M B, Greitzer E M, Marble F E, et al. Effects of stator pressure field on upstream rotor performance[C]. ASME Paper 99-GT-99, 1999. [90] Sirakov B T, Tan C S. Effect of upstream unsteady flow conditions on rotor tip leakage flow[C]. ASME Paper GT-2002-30358, 2002. [91] 邓向阳,张宏武,黄伟光.低速轴流压气机中前后静叶对动叶顶部区域流动的影响[J]. 航空学报,26(5):535-539,2005. [92] 胡骏,汤国才,于再.动叶尾迹对静子非定常气动性能影响的研究[J].航空动力学报,14(4):387-392,1999. [93] 汪松柏,张少平,李春松,等人.转静轴向间距对压气机静子叶片气流激励的影响[J].燃气涡轮试验与研究,33(6):9-15,2020. [94] 张小博,王延荣,黄钟山,等.转静干涉下转子叶片的非定常压力频谱[J].航空动力学报,31(7):1695-1703,2016. [95] 王英锋,胡骏,罗标能,等.上游叶片尾迹对转子叶片非定常表面压力频谱特性影响的研究[J].航空动力学报,21(4):693-699,2006. [96] Wang Xiao. A preconditioning algorithm for turbo machinery viscous flow simulation, [Ph. D. Dissertation].Mississippi:The Mississippi State University, 2005. [97] 陈懋章.粘性流体动力学基础.北京:高等教育出版社,2004. [98] Briley W R, McDonald H, Shamroth S J. A low mach number euler formulation and application to time iterative LBI scheme. AIAA J, 21(10):1467~1469, 1983. [99] Briley W R, Taylor L K, Whitfield D L. High-resolution viscous flow simulations at arbitrary mach number. Journal of Computational Physics, 184 (1): 79~105, 2003. [100] Turkel E. Review of preconditioning methods for fluid dynamics. Applied Numerical Mathematics, 12:257~284, 1993. [101] Janus,J.M.. The development of a three-dimensional split flux vector Euler solver with dynamic grid applications. M.S. Thesis, Mississippi State University, 1984. [102] Wyss,M.L.,Chima,R.V. and Tweedt,D.L.. Averaging techniques for steady and unsteady calculations of a transonic fan stage. AIAA Paper 93-3065, 1993. [103] 谢芳,楚武利,张皓光.跨声轴流压气机激波/泄漏涡/边界层分离相互作用的影响[J]. 航空动力学报,(02):425-430,2012. [104] Giles,M.B.. Calculation of usteady wake/rotor Interactions, 25th Aerospace Sciences Meeting, AIAA Paper 1987-0006, Reno, NV, 1987. [105] Parker, R., Relation between blade row spacing and potential flow interaction effects in turbomachines, Proceedings of the Institution of Mechanical Engineers, AIAA Paper 1967-0068, 1967. [106] Arnone A., Pacciani R.. Rotor-stator interaction analysis using the Navier-Stokes equation and a multigrid method. Journal of Turbomachinery, 118, 679-689, 1996. [107] Rai M.M.. Unsteady three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction. AIAA-87-2058, 1987. [108] Erdos J I, Alzner E, McNally W. Numerical solution of periodic transonic flow through a fan stage[J]. AIAA Journal, 15(11):1559-1568, 1977. [109] Chen J P, Barter J. Comparison of time-accurate calculations for the unsteady interaction in turbomachinery stage[J].AIAA Paper, 1998. [110] Wang X, Chen J P. A post-processor to render turbomachinery flows using phase-lag simulations [J]. AIAA Paper, 2004. [111] 严明,孙立,刘相凤.一种适用于压气机非定常流动的相位滞后算法[J].航空动力学报, (01):100-105,2008. [112] He L. Method of simulating unsteady turbomachinery flows with multiple perturbations. AIAA Journal, 11(30):2730-2735, 1992. [113] Neubauer J.. Aerodynamique 3D instationnaire des turbomachines axiales multi-etages. PHD thesis, Paris VI, 2004. [114] L. Castillon, N.Gourdain, X.Ottavy. Multiple-frequency phase-lagged unsteady simulations of experimental axial compressor[J]. Journal of Propulsion and Power, 31(1):444-455, 2015. [115] 于海力.轴流叶轮机械二维叶栅非定常流动数值模拟[D].中国科学院工程热物理研究所,2003. [116] Mentor B. Zonal two-equation k-ω turbulence models for aerodynamic flows. AIAA-93-2906, 1993. [117] Spalart P.R., Jou W.H., Strelets M., et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach [J]. Advances in DNS/LES, First AFOSR International Conference on DNS/LES, Greyden Press, Louisiana Tech University, 137-147, 1997. [118] Spalart P.R., Deck S., Shur M., et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 20(3):181-195, 2006. [119] Spalart P.R., Allmaras S.R.. A one-equation turbulence model for aerodynamic flows. La Rech. Aerospatiale 1(1):5-21, 1994. [120] Shur M.L., Spalart P.R., Strelets M.K., et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 29(6):1638-1649, 2008. [121] Deardorff J.M.. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics, 41:453-465, 1970. [122] Deck S.. Zonal detached eddy simulation of the flow around a high-lift configuration[J]. AIAA Journal, 43(11):2372-2384, 2005. [123] Yan J, Tawackolian K, Michel U, et al. Computation of jet noise using a hybrid approach[C]. 28th AIAA Aeroacoustics Conference, AIAA 2007-3621, 2007. [124] Froehlich J, Terzi D V. Hybrid LES/RANS methods for the simulation of turbulent flows[J]. Progress in Aerospace Sciences, 44(5):349-377, 2008. [125] Chauvet N, Deck S, Jacquin L. Zonal Detached eddy simulation of a controlled propulsive jet[J]. AIAA Journal, 45(10):2458-2473, 2007. [126] Breuer M, Mazaev K, et al. Comparison of DES, RANS and LES for the separated flow around a flat plate at high incidence[J]. International Journal for Numerical Methods in Fluids, 41(4):357-388, 2003. [127] 刘学强,伍贻兆,程克明.用基于M-SST模型的DES数值模拟喷流流场[J].力学学报,36(04):19-24,2004. [128] 胡偶,赵宁,沈志伟.SST-DDES模型在大分离流动问题中的应用[J].南京航空航天大学学报,49(2):206-211,2017. [129] Jameson A. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. AIAA 10th Computational Fluid Dynamics Conference, 1991. [130] Chen J P. Unsteady three-dimensional thin-layer Navier-Stokes solutions for turbomachinery in transonic flow. Ph.D.Dissertation, Mississippi State University, 1991. [131] Godunov S K. A difference method for the numerical calculation of discontinuous solution of hydrodynamic equations[J]. Mat. Sb. (N.S.), 47:271–306, 1959. [132] Roe P L. Approximate Riemann solvers,parameter vectors and difference schemes[J]. Journal of Computational Physics, 43:357-372, 1987. [133] Martin M P,Taylor E M,Wu M,et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 220:270-289, 2006. [134] Dring R.P., Joslyn H.D., Hardin L.W.. Investigation of axial compressor rotor aerodynamics[J]. Journal of Engineering for Power, 104:84-96, 1982. [135] Schulz H D, Gallus H E, Lakshminarayana B. Three-dimensional separated flow field in the endwall region of an annular compressor cascade in the presence of rotor-stator interaction. Part I : Quasi-steady flow field and comparison with steady-state data[J]. Journal of Turbomachinery, 112(4):669-678, 1990. [136] Lieblein S. Loss and stall analysis of compressor cascade[J]. Journal of Basic Engineering, 81(3):387-400, 1959. [137] Camp T R, Day I J. A study of spike and modal stall phenomena in a low-speed axial compressor[J]. Journal of Turbomachinery, 120(3):393-401, 1998. [138] Urasek D C, Gorrell W T, Cunnan W S. Performance of two-stage fan having low-aspect-ratio first-stage rotor blading. NASA TP-1493, 1979. [139] Rei L, and Moore R D.. Design and overall performance of four highly-loaded, high-speed inlet stages for an advanced, high-pressure-ratio core compressor. NASA TP-1337, 1978. [140] Strazisar A.J.,Wood J.R.,Hathaway M.D.,and Suder K.L. Laser anemometer measurements in a transonic axial-flow fan rotor. NASA TP-2879, 1989. [141] Suder KL. Experimental investigation of the flow field in a transonic axial flow compressor with respect to the development of blockage and loss. NASA Technical Memorandum 107310, 1996. [142] Hongsik IM,Chen Xiangying,Zha Gecheng. Detached-eddy simulation of rotating stall inception for a full-annulus transonic rotor. Journal of Propulsion and Power, 28(4):782-798, 2012. [143] Arima T, Sonoda T, Shirotori M, et al. A Numerical investigation of transonic axial compressor rotor flow using a low Reynolds number k-ε turbulence model. AMERICAN SOCIETY OF MECHANICAL ENGINEERS, 1997. [144] Ning Fangfei, Xu L. Numerical Investigation of Transonic Compressor Rotor Flow Using an Implicit 3D Flow Solver With One-Equation Spalart-Allmaras Turbulence Model[C]. ASME Turbo Expo: Power for Land, Sea, & Air, 2001. [145] Forrest L. Carpenter, Paul G.A.. Transonic fan performance evaluated with different soluiton limiters. ASME GT2017-65174, 1997. [146] Calvert John, Stapleton, Emmerson. Evaluation of a 3D viscous code for turbomachinery flows. ASME 97-GT-78, 1997. [147] Andrea Arnone, Ennio Carnevale, Michele Marconcini. Grid dependency study for the NASA Rotor 37 compressor blade. ASME 97-GT-384, 1997. [148] 张燕峰,楚武利,卢新根.跨声速轴流压气机近失速状态的间隙泄漏流流动特性[J].航空动力学报,23(07):1293-1298,2008. [149] Dario Bruna, Mark G. Turner. A rothalpy analysis for the isothermal boundary condition at casing applied to the Rotor 37 transonic axial flow compressor. ASME GT2013-94595, 2013. [150] Shabbir A., Zhu J.. Assessment of three turbulence models in a compressor rotor. ASME 96-GT-198, 1996. [151] Toshiyukl Arima, Toyotaka Sonoda, Masatoshi Shirotori, et al. Computation of subsonic and transonic compressor rotor flow taking account of Reynolds stress anisotropy. ASME 98-GT-423, 1998. [152] Yves Dubief and Franck Delcayre. On coherent-vortex identification in turbulence. Journal of Turbulence, 1:N11, 2000. [153] J. Jeong, F. Hussain. On the identification of a vortex[J]. Journal of Fluid Mechanics, 285:69-94, 1995. [154] Williams R, Gregory-Smith D, Li H, et al. Experiments and computations on large tip clearance effects in a linear cascade[J]. Journal of Turbomachinery, 132(2):021018.1-021018.10, 2010. [155] Hah C, Bergner J, Schiffer H P. Short length-scale rotating stall inception in a transonic axial compressor : criteria and mechanisms[C]. Asme Turbo Expo: Power for Land, Sea, & Air. 61-70, 2006. [156] 康顺,王仲奇.拓扑方法在叶栅三元流动分析中的应用(Ⅱ):表面摩擦力矢量场[J].应用数学和力学,11(012):1049-1056,1990. [157] 王仲奇,郑严.叶轮机械弯扭叶片的研究现状及发展趋势[J].中国工程科学, 2(6):40-48,2000. [158] 张华良,王松涛,王仲奇.冲角对压气机叶栅内二次涡的影响[J].航空动力学报, 21(001):150-155,2006. [159] Sears W.R.. The boundary layer of yawed cylinders[J]. Journal of the Aeronautical Sciences, 1948. [160] Maskell E C. Flow separation in three dimension. RAE Aero Rept 2655, 1955. [161] Lighthill M.J.. Attachment and separation in three-dimensional flow. Section two 2-6, Laminar Boundary Layers, Ed by Rosenhead, Oxford Univ, 1963. [162] 吕志咏.三维分离模式与开式分离研究[J].航空学报,11(5):262-266,1990. [163] Wang K.C.. Separation of three-dimensional flow. Review in Viscous Flow, Proc. Lockheed-Georgia Co. Symp., LG, 77ER0044, 341-414. [164] 唐燕平,陈矛章,陈芳.扩压叶栅中的旋涡流动[J].航空动力学报,(02):8-17,1990. [165] Kang S. An application of topological analysis to studing the three-dimensional flow in cascade[J]. Applied Mathematics and Mechamics, 11(5):1119-1127, 1990. [166] Su W H, et al. Topological structures of separated flows in topological fluid mechanics. Proc. of the IUTAM Symposium, 395-407, 1990. [167] 吴晶峰. 采用 RANS/LES 组合模拟方法对压气机内部复杂流动的研究[D].北京航空航天大学,2011. [168] 柳阳威. 多级压气机三维定常粘性数值模拟技术研究[D].北京航空航天大学,2009. [169] Yabin Liu,Lei Tan, Theoretical prediction model of tip leakage vortex in a mixed flow pump with tip clearance[J]. Journal of Fluids Engineering, 142:1-12, 2020. [170] Tan C S,Day I,Morris s,et al. Spike-ty pe compressor stall inception,detection,and control[J]. Annual Review of Fluid Mechanics, 42:275-300, 2010. [171] Yabin Liu, Lei Tan. Spatial-temporal evolution of tip leakage vortex in a mixed-flow pump with tip clearance. Journal of Fluids Engineering[J]. 141(8):1-12, 2019. [172] 贾一哲,晁晓亮,杨雄,等.跨音压气机转子叶尖流场中诱导涡的讨论和分析[J].科学技术与工程,17(17):351-356,2017. [173] Hah C, J?rg Bergner, Schiffer H P. Tip clearance vortex oscillation, vortex shedding and rotating instabilities in an axial transonic compressor rotor[C]. ASME Turbo Expo 2008: Power for Land, Sea, and Air. 2008. [174] You D, Wang M, Moin P, et al. Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow[J]. Journal of Fluid Mechanics, 586:177-204, 2007. [175] Wellborn S R, Okiishi T H. Effects of shrouded stator cavity flows on multistage axial compressor aerodynamic performance, NASA CR 198536, 1996. [176] Wisler D C. Loss reduction in axial-flow compressors through low-speed model testing[J]. Asme Journal of Engineering for Gas Turbines & Powers, 107(2):353-363, 1984. [177] Shabbir A, Celestina M L, Adamczyk J J, et al. The effect of hub leakage flow on two high speed axial compressor rotors[C]. ASME Paper 97-GT-346, 1997. [178] 宁方飞,徐力平.叶根间隙泄漏流对跨声压气机转子性能的影响[J].推进技术,25(4):325-329. [179] Wang Hao, Wu Yadong, Hua Ouyang, et al. Casing pressure measurements and numerical simulation of a 1.5 stage axial compressor : tip leakage flow and rotating instability[C]. ASME GT2014-25086, 2014. [180] Inoue M, Kuromaru M, Yoshida S, et al. Effects of tip clearance on stall evolution process in a low-speed axial compressor stage[C]. ASME GT2004-5335, 2004. [181] 于宏军, 刘宝杰, 刘火星, 蒋浩康. 近失速状态下压气机转子叶尖旋涡流动研究[J]. 航空学报, 25(1):9-15, 2004. [182] 邓向阳.压气机叶顶间隙流的数值模拟研究[D].中国科学院研究生院(工程热物理研究所),2006. [183] 向宏辉.轴流压气机气动性能试验中若干关键问题研究[D].南京航空航天大学,2017. [184] Smith, L.H. Jr. Wake ingestion propulsion benefit[J]. J. Propulsion&Power, 9(1):74-82, 1993. [185] Adamczyk,J.J. Aerodynamic analysis of multistage turbomachinery flows in support of aerodynamic design[J]. ASME J. Turbomach., 122:189-217, 2000. [186] Valkov, T.V., Tan, C.S. Effect of upstream rotor vertical disturbances on the time-averaged performance of axial compressor stator:part 1—framework of technical approach and wake-stator blade interactions[J]. ASME J. Turbomach, 121(3):377-386, 1999. [187] N. Arnt. Blade row interacton in a multistage low-pressure turbine. ASME Journal of Turbomachinery, 115(1):137-146, 1993. [188] Ronald Mailach, Konrad Vogeler. Rotor-stator interaction in a four-stage low-speed axial compressor-Part 1:unsteady profile pressure and the effect of clocking[J]. ASME Journal of Turbomachinery, 126:507-518, 2004. [189] Van Zante, D.E., Adamczyk, J.J., Strazisar, A.J.. Wake recovery performance benefit in a high-speed axial compressor[J]. ASME Journal of Turbomachinery, 124(2):275-284, 2002.
﹀
|
中图分类号: |
V231.3
|
馆藏号: |
2022-002-0247
|
开放日期: |
2023-04-07
|