中文题名: | 二氧化硅基增透减反膜的溶胶-凝胶法制备及其功能化研究 |
姓名: | |
学号: | SZ2106041 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085600 |
学科名称: | 工学 - 材料与化工 |
学生类型: | 硕士 |
学位: | 工学硕士 |
入学年份: | 2021 |
学校: | 南京航空航天大学 |
院系: | |
专业: | |
研究方向: | 功能涂层 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2024-03-12 |
答辩日期: | 2024-03-12 |
外文题名: |
A Study on the Fabrication and Functionalization of Antireflective Coatings Based on Silica by Sol-gel Method |
中文关键词: | |
外文关键词: | Antireflective coating ; sol-gel method ; SiO2 ; hollow microsphere ; weather resistance ; self-cleaning |
中文摘要: |
在光伏玻璃盖板表面制备一层纳米级的增透减反膜,可以显著降低太阳光在光伏玻璃盖板表面的反射,增加太阳能的利用率,提高光电转换效率。增透减反膜是基于干涉相消原理减少或消除光学表面的反射光,从而增加光学元件的透光率,对于推动光学技术发展起着非常重要的作用。 同时,位于光伏组件最外层的增透减反膜需要长期经受潮湿环境、雨、雪、日晒、环境污染物以及干旱沙漠地区的沙尘等,复杂恶劣的户外环境对减反射膜在光伏太阳能电池中的应用提出了严峻的考验。仅仅只具有减少反射,提高透过率功能的增透减反膜已经无法满足光伏太阳能电池在户外的长期使用要求,必须针对不同的使用环境对减反射膜进行诸如防潮、自清洁、防结冰以及防尘抗污等多功能改性。增透减反膜的功能化也是当前的研究热点与难点之一。本文使用溶胶-凝胶法与模板法,通过浸渍提拉工艺,制备了F127-SiO2增透减反膜、酸催化改性空心SiO2增透减反膜和Si-Ti改性空心SiO2增透减反膜。本文通过扫描电子显微镜(SEM)、透射电子显微将(TEM)、原子力显微镜(AFM)、傅里叶红外光谱仪、光伏玻璃光谱透射率测试仪等测试手段对所制备溶胶及增透减反膜进行了形貌分析与性能表征。具体研究内容及结论如下: (1)本文使用嵌段共聚物F127制备了F127-SiO2增透减反膜,主要研究造孔剂F127和盐酸添加量对所制膜层微观形貌结构、光学性能和力学性能的影响,得到最佳的成分配比为F127(12g)、HCl(500μL)、TEOS(53.5g)、EtOH(150mL)。将制备好的溶胶在室温下进行陈化,然后置于马弗炉中高温钢化处理,研究陈化时间与钢化工艺对膜层透过率和硬度的影响。研究得到最佳陈化时间5d,730℃热处理120s的最佳制膜工艺。所制增透减反膜在380—1100nm波长范围内达到96.89%的平均透过率,硬度为3H,具有优良的综合性能。 (2)在之前的研究基础上,为改善增透减反膜的耐候性,使用模板法,聚丙烯酸(PAA)作为模板剂,氨水作为催化剂,硅酸四乙酯(TEOS)作为硅源,通过溶胶-凝胶法制备了空心SiO2微球,研究得到PAA、氨水和TEOS对空心球微观形态,壳厚粒径的影响。得到了制备SiO2空心球的最佳成分配比:PAA(0.16g)、氨水(6mL)、TEOS(1.5mL)与无水乙醇(100mL)。然后通过将酸催化SiO2溶胶与最佳成分配比所制空心球分散液混合,制备了酸催化改性空心SiO2溶胶及增透减反膜,研究了酸催化SiO2溶胶与空心球分散液的混合比例对增透减反膜光学性能、力学性能等相关性能的影响。随着酸催化SiO2溶胶添加量的增加,改性增透减反膜的光学性能下降,力学性能提高。探究得到20%为酸催化SiO2溶胶最佳添加比例。所镀制改性膜层透过率为95.02%,硬度为3H,具有良好的综合性能。对膜层进行30天的耐候性测试,透过率仅下降0.06%,证明酸催化改性空心SiO2增透减反膜拥有优异的耐候性能。 (3)除耐候性能之外,增透减反膜还需要能够抵御恶劣的自然环境,具有一定的自清洁功能。在之前的基础上,制备了Si-Ti改性空心球溶胶和对应的Si-Ti改性空心球增透减反膜。研究了Si-Ti复合溶胶的添加量对膜层微观形貌结构、光学性能和力学性能的影响,探究最终所制增透减反膜的耐候性、润湿性与自清洁能力。结果表明,随着Si-Ti复合溶胶添加量的增加,空心球之间的孔隙被填充,孔隙率下降,膜层的透过率下降,硬度提高,水接触角降低。最佳Si-Ti复合溶胶添加量为20vol%时。膜层在380-1100nm波长范围内,平均透过率达到94.97%,硬度等于3H。同时,试样具有超亲水表面,水接触角为3.7°。经过湿热实验,平均透过率由94.97%降低为94.92%,仅衰减0.05%,膜层具有优异的耐候性。通过称重法计算得出,改性后的增透减反膜试样自清洁效率为96.89%。改性增透减反膜具有优异的自清洁性能,在长期恶劣的户外环境下依旧可以保持较高的透过率,在太阳能领域具有很好的应用前景。 |
外文摘要: |
The preparation of a nanoscale antireflective coating on the surface of photovoltaic glass cover plates significantly reduces the reflection of sunlight on the photovoltaic glass, thereby enhancing the utilization of solar energy and the efficiency of photovoltaic conversion. The antireflective coating operates on the principle of destructive interference to reduce or eliminate optical surface reflection, thus increasing the transmittance of optical components, playing a vital role in advancing optical technology. Meanwhile, the antireflective coating located on the outermost layer of solar photovoltaic components needs to withstand long-term exposure to humid environments, rain, snow, sunlight, environmental pollutants and sand in arid desert regions. The complex and harsh outdoor environment poses a severe challenge for the application of antireflective coatings in photovoltaic solar cells. The antireflective coating that only has the function of reducing reflection and improving transmittance can no longer meet the long-term outdoor use requirements of photovoltaic solar cells. It is necessary to modify the antireflective coating with multiple functions such as moisture-proof, self-cleaning, anti-icing, and dust prevention according to different usage environments. The functionalization of antireflective coating is also one of the current research hotspots and difficulties. This paper discusses the preparation of F127-SiO2, acid-catalyzed modified hollow SiO2, and Si-Ti modified hollow SiO2 antireflective coatings using the sol-gel method in conjunction with templating techniques, employing a dip-coating process. Morphological analysis and performance characterization of the prepared sols and coatings were conducted using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy, and Photovoltaic Glass Spectral Transmittance Instrumentation. The specific research content and conclusions are as follows: (1) This study utilized the block copolymer F127 to prepare F127-SiO2 antireflective coatings. The impact of the addition of the F127 and hydrochloric acid on the microstructure, optical properties, and mechanical properties of the final coating was investigated. The optimal composition ratio was found to be F127 (12g), HCl (500μL), TEOS (53.5g), and EtOH (150mL). The prepared sol was aged at room temperature, followed by high-temperature tempering in a muffle furnace, to study the effects of aging time and tempering process on the film's transmittance and hardness. The optimal conditions determined were an aging time of 5 days and a heat treatment at 730°C for 120 seconds. The resulting antireflective coating achieved an average transmittance of 96.89% in the wavelength range of 380-1100 nm and had a hardness of 3H, exhibiting excellent overall performance. (2) Building on previous research, to enhance the weather resistance of the antireflective coatings, hollow SiO2 microspheres were synthesized using the templating method. Polyacrylic acid (PAA) served as the templating agent, ammonium hydroxide as the catalyst, and tetraethyl orthosilicate (TEOS) as the silicon source, employing the sol-gel method. The study investigated the effects of PAA, ammonium hydroxide, and TEOS on the microstructure, shell thickness, and diameter of the hollow spheres. The optimal composition ratio for creating SiO2 hollow spheres was established as PAA (0.16g), ammonium hydroxide (6mL), TEOS (1.5mL), and absolute ethanol (100mL). Subsequently, acid-catalyzed silica sol was mixed with the dispersion of hollow spheres prepared at the optimal composition ratio to fabricate acid-catalyzed modified hollow SiO2 sol and antireflective coatings. The study explored the impact of the mixing ratio of acid-catalyzed silica sol and hollow sphere dispersion on the optical and mechanical properties of the coatings. As the addition of acid-catalyzed silica sol increased, the optical performance of the modified coatings decreased, while their mechanical properties improved. An optimal addition ratio of 20% acid sol was identified. The modified coatings exhibited a transmittance of 95.02% and a hardness of 3H, demonstrating good overall performance. A 30-day weather resistance test of the coating showed only a 0.06% reduction in transmittance, confirming the excellent weather resistance of the acid-catalyzed modified hollow SiO2 antireflective coatings. (3) In addition to weather resistance, antireflective coatings also need to withstand harsh natural environments and possess self-cleaning capabilities. Building on previous work, Si-Ti modified hollow sphere sol and corresponding Si-Ti modified hollow sphere antireflective coatings were prepared. The study examined the effects of the addition of Si-Ti composite sol on the microstructure, optical properties, and mechanical properties of the coatings, exploring the weather resistance, wettability, and self-cleaning ability of the final coatings. The results showed that as the amount of Si-Ti composite sol increased, the porosity between the hollow spheres decreased due to pore filling, leading to a reduction in the coating's transmittance and an increase in hardness, while the water contact angle decreased. The optimal addition of Si-Ti composite sol was 20 vol%. At this concentration, the coating exhibited an average transmittance of 94.97% in the wavelength range of 380-1100nm and a hardness equal to 3H. Additionally, the surface of the sample was super hydrophilic, with a water contact angle of 3.7°. After a humid heat test, the average transmittance decreased from 94.97% to 94.92%, showing a minimal reduction of only 0.05%, indicating excellent weather resistance. The self-cleaning efficiency of the modified antireflective coating samples, calculated using the gravimetric method, was 96.89%. These modified coatings exhibited exceptional self-cleaning properties and maintained a high transmittance rate in long-term harsh outdoor environments, showing promising application prospects in the solar energy field. |
参考文献: |
[1] 韩亚平,吴霞,盛明强等.实现双碳目标的战略和政策体系[J].清洗世界,2023,39(09):90-92. [2] 江泽民.对中国能源问题的思考[J].上海交通大学学报,2008(03):345-359. [3] 杨英明,孙建东,李全生.我国能源结构优化研究现状及展望[J].煤炭工程,2019,51(02):149-153. [4] 吴磊,詹红兵.国际能源转型与中国能源革命[J].云南大学学报(社会科学版),2018,17(03):116-127. [5] 周子勋. 以碳达峰试点建设助力美丽中国目标实现[N]. 中国经济时报,2023-11-09(001). [6] 李宜衡,王振强,朱培武.我国碳达峰碳中和标准化现状及对策建议研究[J].品牌与标准化,2023(05):21-24. [7] 刘增文.新能源产业助力国家“双碳”目标[J].中国高新科技,2022(11):124-125. [8] 刘学文,詹松,巴鑫等.太阳能电池与储能系统集成技术研究进展[J].节能,2023,42(06):90-93. [9] 郭小亚,杨成志,尹子蘅.太阳能发电技术的综合评价及应用前景解析[J].电气技术与经济,2023(03):160-163. [10] 谷志伟,倪素奎.浅谈光伏发电接入配电网调度运行管理[J].农电管理,2023(08):39-40. [11] 牛强强,张小真.双碳背景下能源绿色转型的政策研究——以山西省为例[J].山西化工,2023,43(07):240-243. [12] 张宁,薛美美,吴潇雨等.国内外能源转型比较与启示[J].中国电力,2021,54(02):113-119+155. [14] 徐娟,刘永生,雷伟等.多功能太阳电池减反膜研究进展[J].硅酸盐通报,2015,34(02):428-432+443. [17] 卢进军,刘卫国,潘永强.光学薄膜技术.第2版[M].电子工业出版社,2011. [18] 唐晋发,顾培夫,刘旭,李海峰.现代光学薄膜技术[M].浙江大学出版社,2006. [19] 林永昌,卢维强.光学薄膜原理[M].国防工业出版社,1990. [22] 姚兰芳,鲁凤芹,岳春晓,等.低折射率纳米多孔二氧化硅薄膜的疏水性[J].硅酸盐学报, 2008, 36(2):5. [23] 张学骜,刘长利,钱斯文,等.有序介孔二氧化硅薄膜制备及其组装化学[J].化学进展, 2006. [24] 刘思敏.从碳达峰碳中和谈光伏发电[J].农村电工, 2021, 29(11):2. [25] 时下.落实碳达峰,碳中和目标 促进风电和光伏行业高质量发展[J].电力系统装备, 2021(11):2. [27] 王亚军.光污染及其防治[J].安全与环境学报, 2004(01):56-58.2004.01.015. [28] 李振福.城市光污染研究[J].工业安全与环保, 2002, 28(10):3-4. [29] 谢浩,刘晓帆.玻璃幕墙的"光污染"问题及对策[J].上海建材, 2002(5):3-4. [30] 康煌,郭善济,柯城,等.一种具有减反射涂层的汽车玻璃及其制造方法:CN202010226560.4[P].CN111410437A. [31] 张增明,吕瑞瑞,彭丽霞,等.减反射镀膜光伏玻璃的可靠性及失效研究[J].太阳能, 2012(13):5-6. [32] 姜宏.太阳光伏玻璃在建筑上的应用[C]//中国硅酸盐学会.中国硅酸盐学会, 2009. [33] 徐美君.光伏玻璃的应用与市场[C]//国际先进玻璃熔制技术研讨会.CNKI. 2011:5-12. [34] 王和义, 傅依备.激光减反射膜制备技术展望[J].材料导报, 1999, 13(5):3. [37] 张晓晖,丁双红.光纤通信系统用减反膜的研究[J].海军工程大学学报, 2003, 15(3):4-6. [38] 张杏梅.双波段红外光纤增透膜的研究[J].激光与红外, 2000, 030(002):121-122. [39] 徐晓峰,张凤山,范滨.宽角度入射600~700nm波段减反射薄膜的研究[J].光学学报, 2004, 24(9):4-5. [40] 王珏,吴广明,沈军,等.用于玻璃显示屏宽带减反射纳米涂层和生产方法:CN 99113476[P].CN 1263354 A [41] 景志杰,一种减反射液晶显示器结构:CN201410761938.5[P].CN105785629A [42] 竹文坤,何嵘,孙囡,等.一种OLED柔性显示用减反射膜的制备工艺:CN202111674622.9[P].CN202111674622.9. [43] 徐娟,刘永生,张占先,等.疏水型纳米多孔SiOsub2/sub减反射膜的制备及其催化机理[J].上海交通大学学报, 2018. [44] 张磊.新型纳米结构二氧化硅减反射膜的研究[D].东南大学,2011. [45] 林开华.用电子枪真空蒸发二氧化锆和二氧化硅来制备在玻璃上的保护的增透膜层[J].光学机械, 1977(05):34-36. [46] 王贺权,王志坚,巴德纯,等.磁控溅射制备SiO2/TiO2双层减反射薄膜的研究[C]//真空技术与表面工程——第九届真空冶金与表面工程学术会议论文集.2009. [48] 黄心耕.用离子束辅助蒸发工艺镀制高性能硫化锌红外增透膜[J].航天控制, 1997, 15(4):5. [49] 王曼星.SnO2薄膜的制备与性能表征[D].华中科技大学,2013. [51] 郝霞,潘国治,崔永红,等.采用盐类化学试剂制备减反增透膜层的方法[J].表面技术, 2020, 49(5):8. [52] 黄剑锋.溶胶-凝胶原理与技术[M].化学工业出版社,2005. [53] 杨南如,余桂郁.溶胶—凝胶法的基本原理与过程[J].硅酸盐通报, 1993, 12(2):8. [54] 郭志光,周峰,刘维民.溶胶凝胶法制备仿生超疏水性薄膜[J].化学学报, 2006, 64(8):6. [55] 陈文梅,赵修建.溶胶凝胶法制备TiO2多孔纳米薄膜[J].武汉工业大学学报, 2000, 22(001):6-9. [56] 王疆瑛.溶胶凝胶法制备钛酸锶钡(Ba1-xSr xTiO3陶瓷及其介电性能的研究[J]. 2007. [57] 徐敏,陈群,张弢,等.溶胶凝胶法制备碳纳米管复合物的方法:CN200410093396.5[P].CN1644494. [59] 段婷婷.改性SiO2空心球溶胶及其减反膜的制备与性能研究[D].山东建筑大学. [60] 南昌希,权伍荣,张敬爱,等.浸渍提拉法制备TiO2薄膜及其光催化性能的研究[J].太阳能学报, 2000, 21(004):457-460. [61] 陈尧,池波,刘军,等.浸渍提拉法修饰阳极对DSSC性能的影响[J].功能材料, 2008, 39(7):4. [62] 王东,刘红缨,贺军辉.旋涂法制备功能薄膜的研究进展[J].影像科学与光化学, 2012, 30(002):91-101. [63] 王小燕,董桂芳,乔娟,等.旋涂水溶液前驱体制备氧化锌薄膜及其性质[J].物理化学学报, 2010(7):4. [64] 王世敏,王成海.用喷涂法和溶胶—凝胶工艺制备PT/SnO2(Sb)/SiO2薄膜[J].湖北大学学报:自然科学版, 1997, 19(3):3. [65] 陈煌.热喷涂纳米陶瓷涂层研究进展[J].硅酸盐学报, 2002, 2(30):235-239. [66] 苏贤涌,周香林,崔华,等.冷喷涂技术的研究进展[J].表面技术, 2007, 036(005):71-74. [67] 吴子健.热喷涂技术与应用[M].机械工业出版社,2006. [68] 赵艺超.溶胶—凝胶法和电沉积法制备超疏水表面及其性能研究[D].华南理工大学,2017. [69] 张景.光伏用空心球二氧化硅减反射膜的制备及其功能化研究[D].中国科学院大学(中国科学院宁波材料技术与工程研究所),2018. [82] Bernhard C G. Structural and functional adaptation in a visual system[J]. Endeavour, 1967, 26. [89] GB/T 9286-1998,色漆和清漆 漆膜的划格试验[S]. [90] 张宇,祁晓玉,冯梦瑶,等.电导率调控介孔二氧化硅增透膜透过性能的研究[J].无机盐工业, 2022(008):054. [91] 许羽冬, 光伏玻璃增透膜的制备及其性能[D].华南理工大学,2013. [92] 邹丽萍,李晓光,沈军.高强度有序介孔二氧化硅减反膜的制备及性能[J].稀有金属材料与工程, 2016(S1):5.DOI:CNKI:SUN:COSE.0.2016-S1-106. [93] 高英,溶胶-凝胶闭孔减反膜的制备及性能研究[D].山东建筑大学. [94] 肖尧.纳米多孔二氧化硅光学功能薄膜的溶胶-凝胶法制备与性能研究[D].浙江大学,2018. [95] 林昇华,张景,艾玲,et al.光伏玻璃减反射膜的研究进展[J].材料导报, 2019, 33(21):8. [104] 祝振鑫.膜材料的亲水性、膜表面对水的湿润性和水接触角的关系[J].膜科学与技术, 2014, 34(2):4. |
中图分类号: | TB43 |
馆藏号: | 2024-006-0133 |
开放日期: | 2024-09-28 |