- 无标题文档

中文题名:

 跨介质推进翼飞行器特性分析与出入水控制    

姓名:

 王军杰    

学号:

 BX1901009    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 082501    

学科名称:

 工学 - 航空宇航科学与技术 - 飞行器设计    

学生类型:

 博士    

学位:

 工学博士    

入学年份:

 2019    

学校:

 南京航空航天大学    

院系:

 航空学院    

专业:

 航空宇航科学与技术    

研究方向:

 直升机空气动力学与飞行力学    

第一导师姓名:

 王志瑾    

第一导师单位:

 航空学院    

第二导师姓名:

 陈仁良    

完成日期:

 2023-12-26    

答辩日期:

 2023-12-16    

外文题名:

 

Research on Characteristics and Trans-media Control of Trans-media Water-air Amphibious Vehicle with Propulsion Wing

    

中文关键词:

 跨介质飞行器设计 ; 横流风扇 ; 飞行动力学 ; 出入水过渡 ; 风洞实验 ; 出入水数值模拟     

外文关键词:

 Trans-media Flying Submerged Vehicle design ; Cross flow fan ; flight dynamics ; water entry and exit transition ; wind tunnel testing ; Numerical simulation of water entry and exit transition     

中文摘要:

跨介质飞行器是一种可在水气介质巡航并能多次自由穿越水/空气界面的一体化多功能新型装备,综合了空中飞行器和水下潜航器的优势,兼具空中飞行速度快、机动性好和水下潜航隐蔽性好、航时长等特殊性能。跨介质飞行器作为一种新概念飞行器,存在多学科交叉,仍有跨介质高效推进技术、变介质飞行动力学建模技术及出入水过渡控制等关键技术有待突破。因此,本文针对跨介质推进翼飞行器的单一动力体系推进装置工作原理、飞行器的建模原理及飞行器出入水鲁棒控制原理等关键科学问题,开展了跨介质推进翼飞行器理论分析、数值模拟和实验等研究。

以20kg级跨介质推进翼飞行器原理样机为对象,进行总体构型选择,采用统计和理论分析相结合的方法进行总体参数选择,在此基础上进行跨介质推进翼飞行器气动布局设计,进行了重量、重心、浮心设计;其次,从翼型选择、平面形状设计、横流风扇设计等角度,设计了推进翼外形;再次,考虑到推进翼在不同介质中高效率运行需用扭矩差距大,而直驱电机难以高效率匹配的难题,提出了一种单向行星齿轮减速器设计,实现了电机-推进翼在两种介质中的高效率匹配,完成了不同介质中动力系统的融合;最后,确定了20kg级原理样机的设计方案。

为了解推进翼在水气两种介质中运动的流体动力特性的显著差异,验证作为跨介质飞行器推进系统的潜力,从基本的空气动力学/水动力学原理出发,结合实验分析和CFD数值模拟,探索推进翼在不同介质中的流动机理,发展了一套推进翼流体动力快速计算模型与分析方法,设计了推进翼流体动力实验装置,通过推进翼在不同介质中流体动力特性随转速、迎角和来流速度的变化的实验研究,验证了流体动力特性的正确性。

建立了跨介质推进翼飞行器的飞行动力学模型,可有效模拟跨介质飞行器出入水过渡时导致的近水面流体动力变化、水下附加质量变化及出入水浮力变化对操纵及稳定性的影响。详细分析了机身所受到的流体动力,采用位置导数和旋转导数分别表示飞行器受到的位置力和旋转阻尼力,建立了跨介质飞行器的机身模型。引入相对出水高度 ,建立了包括附加质量、浮力、流体动力系数及力矩系数随相对出水高度的数学模型。空中、水下及出入水过渡的配平结果验证了跨介质推进翼飞行器设计方案的合理性及具备悬停能力。

揭示了推进翼出入水过渡时近水面的气液耦合机理,归纳出推进翼地面效应、水面效应、出入水过渡、天花板效应及飞行器流体动力学状态量随出入水过程的变化规律。首先,采用基于滑移网格技术生成围绕推进翼二维翼型的网格系统,利用VOF模型捕捉气液两相的耦合界面,建立适用模拟推进翼出入水的非定常数值模拟方法,研究了推进翼出入水过渡的气液耦合特性;其次,采用基于重叠网格技术生成围绕跨介质推进翼飞行器(不包括推进翼的横流风扇)的三维网格系统,建立其出入水的非定常数值模拟方法,研究了其出入水过程的机体载荷、流场等。

为了实现飞行器反复介质跨越,建立了跨介质推进翼飞行器的操纵策略及控制方法。在飞行器基准运动的基础上,确定本文飞行器固定姿态低速垂直出入水的介质跨越方案,并分析了其出入水的操纵策略,分别基于PID方法和ADRC方法设计跨介质运动控制器,实现了空中、水下和出入水过渡过程的一体化控制。仿真结果表明,ADRC方法具有更好的出入水控制性能,跟踪效果较好,俯仰角变化平稳,验证了设计的技术验证样机控制方案的可行性,具备重复出入水功能,满足介质跨越时间低于8s的设计要求。

外文摘要:

The cross-medium aircraft is a novel, integrated, and multifunctional equipment capable of cruising in both air and water mediums, and freely crossing the air-water interface multiple times. It combines the advantages of traditional aircraft and underwater submersibles, possessing characteristics like high-speed flight, excellent maneuverability, underwater stealth, and long endurance. As a new concept aircraft, the cross-medium aircraft lies at the intersection of multiple disciplines. It still faces challenges, such as efficient cross-medium propulsion technology, hydro-air coupled flight dynamics modeling, and control mechanisms for transitioning between air and water environments. Building upon the research on tilt-quadcopters and fan-wing aircraft, this thesis employs a combination of theoretical analysis, numerical simulations, and experimental methods to investigate this issue.

Taking a 20kg-class cross-medium propulsion wing aircraft prototype as the object, the study begins with overall configuration selection using a combined approach of statistical and theoretical analysis for overall parameter selection. Based on this, the aerodynamic layout of the cross-medium propulsion wing aircraft is designed, considering weight, center of gravity, and buoyancy. Next, the outer shape of the propulsion wing is designed from the perspectives of wing selection, planform shape design, and fan-wing design. To address the challenge of significant torque differences required for efficient operation in different mediums, a unidirectional planetary gear reducer design is proposed. This design achieves efficient matching between the motor and the propulsion wing in two different media, completing the integration of the power system for different environments. Finally, a conceptual design plan for a principle prototype is obtained.

Through experimental analysis and computational fluid dynamics (CFD) numerical simulations based on fundamental aerodynamics/hydrodynamics principles, the study explores the flow mechanisms of the propulsion wing in different mediums, A set of rapid calculation model and analysis method for propulsion wing fluid dynamics is developed, and an experimental device for propulsion wing fluid dynamics is designed. The correctness of hydrodynamic characteristics of propulsion wing in different media is verified by experimental research on the variation of hydrodynamic characteristics with speed, Angle of attack and incoming flow velocity.

Built upon the concept of component-based modeling, a comprehensive nonlinear flight dynamics model suitable for cross-medium propelled-wing aircraft was established. The fluid dynamics acting on the fuselage were analyzed in detail. Position derivatives and rotational derivatives were employed to represent the positional forces and rotational damping forces, respectively, resulting in the formulation of the fuselage model for the cross-medium aircraft. Introducing the relative water exit height, a mathematical model incorporating additional mass, buoyancy, fluid dynamic coefficients, and torque coefficients with respect to the relative water exit height was developed. Trim results for airborne, underwater, and the transition between the two verified the rationality of the cross-medium propelled-wing aircraft design and its hovering capability.

The gas-liquid coupling mechanism near the water surface is revealed, and the ground effect, water surface effect, water entry and exit transition, ceiling effect and hydrodynamic state quantity of the propulsion wing change with the water entry and exit transition are summarized. Initially, a grid system around the two-dimensional wing profile of the propulsion wing was generated using a slip mesh technique. The Volume of Fluid (VOF) model was utilized to capture the coupled interface between air and liquid, establishing a numerical simulation method suitable for simulating the unsteady water entry of the propulsion wing. Subsequently, employing an overlapping mesh technique, a three-dimensional grid system around the cross-medium propelled-wing aircraft (excluding the transverse flow fan of the propulsion wing) was created. A numerical simulation method suitable for simulating the unsteady water entry and exit processes of the cross-medium propelled-wing aircraft, including body loads and flow fields, was established. Finally, based on the above calculations, the flight dynamics model was revised through data fitting.

To achieve repeated cross-medium transitions for the aircraft, an analysis of the stability of the cross-medium propelled-wing aircraft was conducted based on the baseline motion of the aircraft. The thesis determined a cross-medium transition scheme for the fixed attitude, low-speed, vertical water entry, and analyzed its water entry manipulation strategy. Motion controllers for cross-medium transitions were designed based on the Proportional-Integral-Derivative (PID) method and Active Disturbance Rejection Control (ADRC) method, achieving integrated control during airborne, underwater, and transition processes. Simulation results demonstrated that the ADRC method exhibited better water entry control performance with a smooth pitch angle variation. The feasibility of the proposed technical verification prototype control scheme was verified, demonstrating repeated water entry capability, meeting the design requirement of a cross-medium transition time less than 8 seconds.

参考文献:

[1] Drews P L J, Neto A A, Campos M F M. A survey on aerial submersible vehicles. IEEE/OES Oceans International Conference. IEEE, 2014.

[2] 冯金富,陈国明,张萌. 变体技术在兵器设计上的应用. 兵器装备工程学报,2017,38(12):215-220.

[3] Robin R, Murphy, et al. Cooperative use of unmanned sea surface and micro aerial vehicles at Hurricane Wilma. Journal of Field Robotics, 2008, 25(3): 164–180.

[4] Nagatani, Kiribayashi, Okada, et al. Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots. Journal of Field Robotics, 2013, 30(1):44-63.

[5] 杨健,冯金富, 齐铎,等. 水空介质跨越航行器的发展与应用及其关键技术.飞航导弹, 2017(12):1-8.

[6] Valavanis K P, Vachtsevanos G J. Springer Handbook of Unmanned Aerial Vehicles. Dordrecht: Springer, 2015.

[7] Hu J H, Xu B W, Feng J F, et al. Research on Water-Exit and Take-off Process for Morphing Unmanned Submersible Aerial Vehicle. China Ocean Engineering, 2017, 31(02): 202-209.

[8] Yang J, Feng J F, Li Y L, et al. Water-Exit Process Modeling and Added-Mass Calculation of the Submarine-Launched Missile. Polish Maritime Research, 2017(24): 152-164.

[9] Chen C, Ma Q P, Wei Y J, et al. Experimental study on the cavity dynamics in high-speed oblique water-entry. Fluid Dynamics Research, 2018, 50(4): 1-30.

[10] Cheng Y, Ji C, Oleg G, et al. Wave–current entry of an asymmetric wedge in 3DOF free motions. Engineering Analysis with Boundary Elements, 2018, 91: 132-149.

[11] Kamath A, Bihs H, Arntsen Ø A. Study of Water impact and entry of a free fallingwedge using computational fluid dynamics simulations. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139(3): 1-6.

[12] Wu Q G, Ni B Y, Bai X L, et al. Experimental study on large deformation of free surface during water exit of a sphere. Ocean Engineering, 2017(140):369-376.

[13] 杨世兴, 李乃晋, 徐宣志. 空投鱼雷技术. 昆明: 云南科学技术出版社, 2001:1-20.

[14] 朱坤. 导弹水下发射技术. 北京: 中国宇航出版社, 2017:1-20.

[15] 何肇雄,郑震山,马东立,周峤. 国外跨介质飞行器发展历程及启示. 舰船科学技术,2016,38(09):152-157.

[16] 陈建峰,杨龙塾.美国DARPA提出的“潜水飞机”概念.现代舰船,2009(03):38-39.

[17] Yang X, Wang T, Liang J, et al. Survey on the novel hybrid aquatic–aerial amphibious aircraft: Aquatic unmanned aerial vehicle (Aqua UAV). Progress in Aerospace Sciences, 2015, 74(apr.):131-151.

[18] 刘相知,崔维成. 潜空两栖航行器的综述与分析.中国舰船研究,2019,14(S2):1-14.

[19] Fabian A, Feng Y, Swartz E, et al. Hybrid Aerial Underwater Vehicle. Lexington, USA:MIT Lincoln Lab, 2012.

[20] Liang J H, Yao G C, Wang T M, et al. Wing load investigation of the plunge-diving locomotion of a gannet morus inspired submersible aircraft. Science China Technological Sciences, 2014, 57(2): 390-402.

[21] Liang J, Yang X, Wang T, et al. Design and Experiment of a Bionic Gannet for Plunge-Diving. Journal of Bionic Engineering, 2013, 10(003):282-291.

[22] Gao A, Techet A H. Design considerations for a robotic flying fish. Oceans, IEEE, 2011: 1-8.

[23] Siddall R, Ortega A A, Kovač M. Wind and water tunnel testing of a morphing aquatic micro air vehicle. Interface Focus, 2017, 7(1): 1-15.

[24] Siddall R, Kovac M. Fast aquatic escape with a jet thruster. IEEE/ASME Transactions on Mechatronics, 2016, 22(1): 217-226.

[25] Chen Y, Wang H, Helbling E F, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Science Robotics, 2017, 2(11):1-11.

[26] Huang J, Gong X, Wang Z, Xue X, Zhang D. The kinematics analysis of webbed feet during cormorants' swimming. 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2016:301-306.

[27] Lock R J, Vaidyanathan R, Burgess S C, et al. Development of a biologically inspired multi-modal wing model for aerial-aquatic robotic vehicles through empirical and numerical modelling of the common guillemot, Uria aalge. Bioinspiration & biomimetics, 2010, 5(4): 046001.

[28] Lock R J. A biologically-inspired multi-modal wing for aerial-aquatic robotic vehicles, [Dissertation]. University of Bristol, 2011.

[29] Izraelevitz J S, Triantafyllou M S. A novel degree of freedom in flapping wings shows promise for a dual aerial/aquatic vehicle propulsor//2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015: 5830-5837.

[30] 张秀梅. 翠鸟入水俯冲气动特性及变体飞行策略研究, [硕士学位论文]. 长春:吉林大学, 2018.

[31] 吴正阳. 基于翠鸟入水策略的跨介质飞行器构型仿生设计及入水性能研究, [博士学位论文]. 长春:吉林大学,2021.

[32] 贺永圣. 仿生跨介质飞行器水气动布局融合设计及出水特性分析, [硕士学位论文]. 长春:吉林大学,2021.

[33] 郑益华. 基于翠鸟界面润湿控制行为的跨介质航行器表面防浸润研究[博士学位论文]. 长春:吉林大学,2020.

[34] 云忠, 温猛, 罗自荣, 陈龙. 仿翠鸟水空跨介质航行器设计与入水分析.浙江大学学报(工学版), 2020, 54(02):407-415.

[35] 陈怀远. 跨介质飞行器设计及流体动力学特性分析, [硕士学位论文]. 南京: 南京航空航天大学, 2019.

[36] 邓见, 金楠, 周意琦, 路宽, 邵雪明. 仿飞鱼跨介质无人平台的探索研究.水动力学研究与进展(A 辑), 2020, 35(01):55-60.

[37] Xue X, Zhao X, Huang J, et al. Experiments and analysis of cormorants' density, wing loading and webbed feet loading. IEEE International Conference on Robotics & Biomimetics. IEEE, 2017.

[38] Tan Y H, Chen B M. Thruster Allocation and Mapping of Aerial and Aquatic Modes for a Morphable Multimodal Quadrotor. IEEE/ASME Transactions on Mechatronics, 2020, 25(4):2065-2074.

[39] Tan Y H, Chen B M. A Morphable Aerial-Aquatic Quadrotor with Coupled Symmetric Thrust Vectoring// 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 2223–2229.

[40] Tan Y H, Chen B M. Motor-propeller Matching of Aerial Propulsion Systems for Direct Aerial-aquatic Operation// 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 1963–1970.

[41] 秦靖淳.跨介质多旋翼潜空两栖航行器运动控制研究, [硕士学位论文].长春:吉林大学,2020.

[42] 张硕. 共轴式水空双动力跨介质无人机结构设计与动力性能研究, [硕士学位论文]. 西安:西安电子科技大学,2021.

[43] Chase R, Tang M. A history of the NASP program from the formation of the joint program office to the termination of the HySTP scramjet performance demonstration program. AIAA-1995-6051,1995.

[44] 孙祥仁,曹建,姜言清,李岳明,李晔. 潜空跨介质无人航行器发展现状与展望.数字海洋与水下攻防,2020,3(03):178-184.

[45] Neto A A, Mozelli L, Drews-Jr P L J, et al. Attitude control for a hybrid unmanned aerial underwater vehicle: a robust switched strategy with global stability. IEEE International Conference on Robotics & Automation. IEEE, 2015.

[46] Fidan B, Mirmirani M, Ioannou P. Flight dynamics and control of air-breathing hypersonic vehicles:review and new directions. AIAA International Space Planes & Hypersonic Systems & Technologies,2015.

[47] Weisler W, Stewart W, Anderson M B, et al. Testing and characterization of a fixed wing cross-domain unmanned vehicle operating in aerial and underwater environments. IEEE Journal of Oceanic Engineering, 2017, 43(4): 969-982.

[48] Vyas A, Sivadasan R, Molawade A, et al. Modelling and Dynamic Analysis of a Novel Hybrid Aerial–Underwater Robot - Acutus// OCEANS 2019 - Marseille. 2019.

[49] Moore J. Closed-Loop Control of a Delta-Wing Unmanned Aerial-Aquatic Vehicle. Robotics, 2019:1-8.

[50] Lu D, Xiong C, Zhou H, et al. Design, fabrication, and characterization of a multimodal hybrid aerial underwater vehicle. Ocean Engineering, 2020, 219:108324.

[51] Lu D, Xiong C, Zeng Z, and Lian L. A multimodal aerial underwater vehicle with extended endurance and capabilities. in 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 4674–4680.

[52] Hsu M W. AquaFly: A tilt-rotor vertical take-off and landing aquatic unmanned aerial vehicle, [Dissertation]. Canada: University of Toronto, 2020.

[53] 朱莎. 水空两用无人机动力系统设计与研究, [硕士学位论文].南昌:南昌航空大学, 2012.

[54] 孙化朋. 低潜飞行器推进系统流场特性分析及优化设计, [硕士学位论文]. 长春: 吉林大学, 2017.

[55] Shojaeefard M H, Askari S. Experimental and numerical investigation of the flap application in an airfoil in combination with a cross flow fan. International Journal of Numerical Methods for Heat & Fluid Flow, 2012,22(6):742-763.

[56] Moon YJ, Cho Y and Nam H. Computation of unsteady viscous flow and aero acoustic noise of cross flow fans. Computation Fluids, 2003, 32(7): 995-1015.

[57] 冯衬. 前缘小翼及开槽对扇翼气动性能影响分析, [硕士学位论文].南京:南京航空航天大学,2015.

[58] 杜思亮,唐正飞.基于扇翼机翼升推力机理的吹气机翼研究.航空动力学报,2017,32(11):2743-2751.

[59] 孟琳. 扇翼飞行器特性分析及控制系统研究, [博士学位论文]. 南京:南京航空航天大学,2018.

[60] 孟琳,叶永强,李楠.扇翼飞行器的研究进展与应用前景.航空学报,2015,36(08):2651-2661.

[61] 杜思亮. 扇翼空气动力特性数值模拟与试验研究, [博士学位论文]. 南京:南京航空航天大学,2017.

[62] Mortier P. Fan or blowing apparatus. US, Patent, 507445, 1893.

[63] Dornier P. Multiple drive for aircraft having wings provided with transverse flow blowers. US Patent, 3065928, 1962.

[64] Harloff G J, Wilson D R. Cross-flow propulsion fan experimental development and finite-element modeling. Journal of Aircraft, 1981, 18(4):310-317.

[65] Gossett D H. Investigation of cross flow fan propulsion for light weight VTOL aircraft, [Dissertation]. Monterey, CA: Naval Postgraduate School, 2000.

[66] Foreshaw S. Wind tunnel investigation of the new ‘Fan Wing’ design, [Dissertation]. London: Imperial College, 1999.

[67] Kogler K. Fan Wing: experimental evaluation of a novel lift and propulsion device, [Dissertation]. London: Imperial College, 2002.

[68] Kummer J D, Dang T Q. Hight-lift propulsive airfoil with integrated cross flow fan. Journal of Aircraft, 2006, 43(4):1059-1068.

[69] Duddempudi D, Yao Y, Edmondson D, et al. Computational study of flow over generic fan-wing airfoil. Aircraft Engineering and Aerospace Technology, 2007, 79(3):238-244.

[70] Askari S, Shojaeefard M H. Numerical simulation of flow over an airfoil with a cross flow fan as a lift generating member in a new aircraft model. Aircraft Engineering and Aerospace Technology, 2009(1):59-64.

[71] Askari S, Shojaeefard M H. Shape optimization of the airfoil comprising a cross flow fan. Aircraft Engineering and Aerospace Technology, 2009(5):407-415.

[72] Askari S, Shojaeefard M H, Goudarzi K. Experimental study of stall in an airfoil with forced airflow provided by an integrated cross-flow fan. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, 2011, 225(G1):97-104.

[73] 吴浩东. 风扇翼内部偏心涡特性研究, [硕士学位论文]. 南京:南京航空航天大学, 2012.

[74] 张银辉. 风扇翼非定常流动的数值分析, [硕士学位论文]. 南京:南京航空航天大学, 2012.

[75] 杜思亮, 芦志明, 唐正飞. 扇翼飞行器翼型附面层控制数值模拟. 航空学报, 2016, 37(6):1781-1789.

[76] 唐荣培. 风扇翼气动特性试验研究, [硕士学位论文]. 南京:南京航空航天大学, 2014.

[77] Cheng WT. Experimental and numerical analysis of a Crossflow fan, [Dissertation]. Monterey, CA: Naval Postgraduate School, 2003.

[78] Ulvin J. Experimental investigation of a six inch diameter, four inch span cross-flow fan, [Dissertation]. Monterey, CA: Naval Postgraduate School, 2008.

[79] Jones AM. Integration of twenty-bladed cross-flow fan into vertical take-off and landing aircraft, [Dissertation]. Monterey, CA: Naval Postgraduate School, 2013.

[80] Smitley ED. Development of a cross-flow fan powered quad-rotor unmanned aerial vehicle, [Dissertation]: Monterey, CA: Naval Postgraduate School, 2015.

[81] Fulton JJ. Wing-embedded, cross-flow-fan, vertical takeoff and landing air vehicle, [Dissertation]. Monterey, CA: Naval Postgraduate School, 2016.

[82] Gao T, Lin Y, Ren H, et al. Hydrodynamic Analyses of an Underwater Fan-Wing Thruster in Self-Driving and Towing Experiments. Measurement, 2020, 165(25):108132.

[83] Gao T, Lin Y. Model analysis, design and experiment of a fan-wing underwater vehicle. Ocean Engineering, 2019, 187(Sep.1):106101.1-106101.11.

[84] Tianzhu G, Yang L, Hongliang R. The role studies of fixed-wings in underwater fan-wing thrusters. Ocean Engineering, 2020,216.

[85] 刘乐,邢福,渠继东.基于CFD扇翼推进器水动力特性数值分析.舰船科学技术,2021,43(01):48-52.

[86] 刘乐,渠继东,邢福,郑志恒.基于CFD扇翼推进器敞水性能预报分析.舰船科学技术,2021,43(23):94-98.

[87] Cai X, Zhang C, Wang B. Numerical Study on Fluid Dynamic Characteristics of a Cross-Flow Fan. Journal of Marine Science and Engineering,2023,11(4):846-864.

[88] Ilya Y S. Development of hybrid air-water rotor transition thrust prediction and control, [Dissertation]. USA: University of Maryland, 2020.

[89] 徐仁,鞠世琦,詹祺等.旋翼跨介质试验系统设计与性能实验研究.飞行力学. 2023:1-6.

[90] 白兴之,吴文华,林泽铖等.旋翼近水面效应影响因素.空气动力学学报:1-14.

[91] QI D, FENG J, LI Y. Dynamic model and ADRC of a novel water-air unmanned vehicle for water entry with in-ground effect. Journal of Vibroengineering,2016,18(6):3743−56.

[92] 姚熊亮,赵斌,马贵辉. 跨介质航行体出水问题研究现状与展望.航空学报. 2023:1-26.

[93] 刘君遥,于勇.受约束航行体跨介质试验方案设计及其CFD分析.航空学报:1-15.

[94] KOROBKIN A. Analytical models of water impact.European Journal of Applied Mathematics, 2004, 15(6): 821-838.

[95] LOGVINOVICH G V. Hydrodynamics of flows with free boundaries. New York: Halsted Press, 1973.

[96] TASSIN A, PIRO D J, KOROBKIN A A, et al. Two-dimensional water entry and exit of a body whose shape varies in time. Journal of Fluids and Structures,2013, 40: 317-336.

[97] HU J H, XU B W, FENG J F, et al. Research on water-exit and take-off process for Morphing Unmanned Sub-mersible Aerial Vehicle. China Ocean Engineering, 2017, 31(2): 202-209.

[98] TVEITNES T, FAIRLIE-CLARKE A C, VARYANIK. An experimental investigation into the constant velocity water entry of wedge-shaped sections. Ocean Engineering, 2008, 35 (14-15): 1463-1478.

[99] LEE M, LONGORIA R G, WILSON D E. Cavity dynamics in high-speed water entry. Physics of Fluids,1997, 9 (3): 540-550.

[100] WEI Z Y, HU C H. Experimental study on water entry of circular cylinders with inclined angles. Journal of Marine Science and Technology, 2015, 20 (4): 722-738.

[101] SHI Y, PAN G, YAN G X, et al. Numerical study on the cavity characteristics and impact loads of AUV water entry. Applied Ocean Research, 2019, 89: 44-58.

[102] LI Y L, FENG J F, HU J H, et al. Research on the motion characteristics of a trans-media vehicle when entering water obliquely at low speed. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(2): 188-200.

[103] Drews P L J, Neto A A, Campos M F M. Hybrid unmanned aerial underwater vehicle: modeling and simulation. IEEE/RSJ International Conference on Intelligent Robots and Systems,2014:4637-4642.

[104] Maia M M, Soni P, Diez F J. Demonstration of an Aerial and Submersible Vehicle Capable of Flight and Underwater Navigation with Seamless Air-Water Transition. 2015.

[105] Alzu bi H, Akinsanya O, Kaja N, et al. Evaluation of an aerial quadcopter power-plant for underwater operation. International Symposium on Mechatronics and its Applications (ISMA),2015:1-4.

[106] Tan Y H, Chen B M. Design of a morphable multirotor aerial-aquatic vehicle. Oceans 2019 MTS/IEEE,2019:1-8.

[107] Alzu'Bi H, MANSOUR L, RAWASHDEH O. Loon Copter: Implementation of a hybrid unmanned aquatic-aerial quadcopter with active buoyancy control. Journal of Robotic Systems, 2018, 35(5): 764–778.

[108] Mercado D A, Maia M M, Diez F J. Modeling and control of unmanned aerial/underwater vehicles using hybrid control. Control Engineering Practice, 2018, 76:112-122.

[109] Mercado D, Maia M, Diez F J. Aerial-Underwater Systems, a New Paradigm in Unmanned Vehicles. Journal of Intelligent & Robotic Systems, 2018.

[110] Maia M M, Mercado D A, Diez FJ. Design and implementation of multirotor aerial-underwater vehicles with experimental results. IEEE International Conference on Intelligent Robots and Systems (IROS), IEEE, 2017.

[111] Villegas A, Mishkevich V, Gulak Y, et al. Analysis of key elements to evaluate the performance of a multirotor unmanned aerial-aquatic vehicle. Aerospace Science and Technology, 2017, 70:412-418.

[112] 廖保全,冯金富,徐保伟,等.附加质量变化率在航行体出水过程中的影响研究.计算力学学报,2017,34(1):95-100.

[113] 余宗金,冯金富,胡俊华,等.水空跨越航行器出水运动建模.计算机仿真,2015,32(11):101-105.

[114] 谭骏怡,胡俊华,陈国明,杨健,葛阳.水空跨介质航行器斜出水过程数值仿真.中国舰船研究,2019,14(06):104-121.

[115] 颜奇民,胡俊华,陈国明,谭俊怡,葛阳.双层四旋翼跨介质航行器水空跨越建模与控制.飞行力学,2020,38(05):50-56.

[116] Lock R J, Vaidyanathan R, Burgess S C. Design and experimental verification of a biologically inspired multi-modal wing for aerial-aquatic robotic vehicles, RAS & EMBS International Conference On Biomedical Robotics and Biomechatronics (BioRob), IEEE, 2012.

[117] Du H, Fan G, Yi J. Nonlinear longitudinal attitude control of an unmanned seaplane with wave filtering. International Journal of Automation and Computing, 2016,13(6):634-642.

[118] Du H, Fan G, Yi J. Autonomous takeoff for unmanned seaplanes via fuzzy identification andgeneralized predictive control. IEEE International Conference on Robotics and Biomimetics,2013:2094-2099.

[119] Du H, Fan G, Yi J. Autonomous takeoff control system design for unmanned seaplanes. Ocean Engineering, 2014, 85: 21-31.

[120] 裴譞,张宇文,李闻白,等. 跨介质飞行器气/水两相弹道仿真研究. 工程力学, 2010, 27(8):223-228.

[121] 裴譞,张宇文,王银涛,等. 两栖UAV滑跳动力学特性仿真研究. 计算力学学报,2011,28(02): 173-177.

[122] Ma Z C, Feng J F, Yang J. Research on vertical air-water trans-media control of Hybrid Unmanned Aerial Underwater Vehicles based on adaptive sliding mode dynamical surface control. International Journal of Advanced Robotic Systems, 2018, 15(2):1-10.

[123] Yu H T, Siddall R, Kovac M. Efficient Aerial–Aquatic Locomotion With a Single Propulsion System. IEEE Robotics and Automation Letters, 2017, 2(3):1304-1311.

[124] 唐胜景,张宝超,岳彩红,桑晨,郭杰.跨介质飞行器关键技术及飞行动力学研究趋势分析.飞航导弹,2021(06):7-13.

[125] 周攀,陈仁良,俞志明.倾转四旋翼飞行器直升机模式操纵策略研究.航空动力学报,2021,36(10):2036-2051.

[126] 周攀,陈仁良,俞志明.倾转四旋翼飞行器直升机模式操稳特性分析.西北工业大学学报,2021,39(03):675-684.

[127] 俞志明,陈仁良,孔卫红.倾转四旋翼飞行器倾转过渡走廊分析方法.北京航空航天大学学报,2020,46(11):2106-2113.

[128] 严旭飞,陈仁良.倾转旋翼机动态倾转过渡过程的操纵策略优化.航空学报,2017,38(07):59-69.

[129] Deepak B V L, Singh P. A survey on design and development of an unmanned aerial vehicle (quadcopter). International Journal of Intelligent Unmanned Systems, 2016, 4(2): 70-106.

[130] Ghazbi S N, Aghli Y, Alimohammadi M, et al. Quadrotor unmanned aerial vehicles: a review. International Journal on Smart Sensing And Intelligent Systems, 2016, 9(1):309-333.

[131] Bashi O I D, Hasan W Z W, Azis N, et al. Unmanned Aerial Vehicle Quadcopter: A Review. Journal of Computational and Theoretical Nanoscience, 2017, 14(12): 5663-5675.

[132] Wang W H, Chen X Q, Marburg A, et al. Design of low-cost unmanned nderwater vehicle for shallow waters. International Journal of Advanced Mechatronic Systems, 2009, 1(3): 194-202.

[133] Wang W H, Engelaar R C, Vervoort J H A M, et al. Navigation modeling and simulation for canterbury hover-capable underwater vehicle. IFAC Proceedings Volumes, 2009, 42(16): 44-49.

[134] 王军杰,俞志明,陈仁良,王志瑾,陆嘉鑫.倾转四旋翼飞行器垂直飞行状态气动特性.航空动力学报,2021,36(02):249-263.

[135] 石嘉,裴忠才,唐志勇,胡达达.改进型自抗扰四旋翼无人机控制系统设计与实现.北京航空航天大学学报,2021,47(09):1823-1831.

[136] 寇立伟. 四旋翼水下航行器的轨迹跟踪和协同包围控制研究, [硕士学位论文].杭州:浙江大学,2021.

[137] 边靖伟. 四旋翼式水下航行器设计与关键技术研究, [博士学位论文].杭州:浙江大学,2019.

[138] Askari S, Shojaeefard M.H. Experimental and numerical study of an airfoil in combination with a cross flow fan. Proceedings of Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2013, 227(G7):1173-1187.

[139] 总编委会飞机设计手册.飞机设计手册.第19册,直升机设计.北京:航空工业出版社, 2005.

[140] 余雄庆,徐惠民,昂海松.飞机总体设计.北京:航空工业出版社,2000.

[141] Lu J, Lu Y, Wang J, Shao M. Numerical study on aerodynamic characteristics of two-dimensional propulsive wing in cruise and hover. International Journal of Micro Air Vehicles, 2022, 14:1-19.

[142] 苏玉民, 庞永杰. 潜艇原理. 哈尔滨:哈尔滨工程大学出版社, 2013.

[143] 马运义, 许建主. 现代潜艇设计理论与技术. 哈尔滨:哈尔滨工程大学出版社, 2012.

[144] Martin MJ. Development of a cross-flow fan rotor for vertical take-off and landing aircraft, [Dissertation]. Monterey, CA: Naval Postgraduate School, 2013.

[145] Waterman TJ. Development of improved design and 3D printing manufacture of cross-flow fan rotor, [Dissertation]. Monterey, CA: Naval Postgraduate School, 2016.

[146] Kummer JD. Simulation of the cross-flow fan and application to a propulsive airfoil concept, [Dissertation]. New York, USA: Syracuse University, 2006.

[147] 刘向楠. 扇翼设计参数及翼面形状气动优化研究, [硕士学位论文]. 南京:南京航空航天大学,2015.

[148] 杜思亮,冯衬,唐正飞.带前缘小翼的扇翼翼型气动特性数值模拟分析.北京航空航天大学学报,2020,46(05):870-882.

[149] Kasem A, Gamal A, Hany A, et al. Design and implementation of an unmanned aerial vehicle with self-propulsive wing. Advances in Mechanical Engineering, 2019, 11(6): 1-10.

[150] Pelz P, Liese P, Meck M. Sustainable aircraft design-A review on optimization methods for electric propulsion with derived optimal number of propulsors. Progress in Aerospace Sciences, 2021,123: 100714.1-100714.28.

[151] Hall D, Huang A, Uranga A, Greitzer E, Drela M, Sato S. Boundary Layer Ingestion Propulsion Benefit for Transport Aircraft. Journal of Propulsion and Power, 2017,33: 1118-1129.

[152] Menegozzo L, Benini E. Boundary Layer Ingestion Propulsion: a Review on Numerical Modelling. Journal of Engineering for Gas Turbines and Power, 2020,142: 120801-120815.

[153] Kim H, Liou M. Flow simulation and optimal shape design of N3-X hybrid wing body configuration using a body force method. Aerospace Science and Technology, 2017, 71: 661-674.

[154] Drela M. Development of the D8 Transport Configuration. Fluid Dynamics and Colocated Conferences: 29th AIAA Applied Aerodynamics Conference, Hawaii. 2011:1-14.

[155] Hu J, Li F, Sun S, et al. Numerical simulation of unsteady hydrodynamic performance of CRP. Ocean engineering, 2022,266: 113165.

[156] Felli M, Falchi M. Propeller wake evolution mechanisms in oblique flow conditions. Journal of Fluid Mechanics, 2018, 845:520-559.

[157] Seo J. Yoon H.S., Kim M.I. Flow characteristics and performance of thepropulsion system with wavy duct. Ocean engineering, 2022,257: 111727.

[158] Stark C., Shi W.C, Atlar M. A numerical investigation into the influence of bioinspired leading-edge tubercles on the hydrodynamic performance of a benchmarkducted propeller. Ocean engineering, 2021, 237: 109593.

[159] Huang Q, Qin D, Pan G. Numerical simulation of the wake dynamics of the pumpjet propulsor in oblique inflow. Physics of fluids, 2022, 34(6): 065103.

[160] Qiu C, Huang Q, Pan G, et al. Numerical simulation of hydrodynamic and cavitation performance of pumpjet propulsor with different tip clearances in oblique flow. Ocean Engineering, 2020, 209(5):107285.

[161] 郜天柱. 水下扇翼推进器动力学特性研究, [博士学位论文].北京:中国科学院大学,2021.

[162] Lu J, Lu Y, Wang J, Xu X, Shao M. Numerical investigation of the quasi-vortex-ring state of the propulsive wing in vertical descent. Aerospace Science and Technology, 2023, 132: 108075.

[163] Lu J, Lu Y, Ma J, Wang J. Numerical investigation of the wake transition and aerodynamic efficiency of the two-dimensional propulsive wing. AIP Advances, 2022, 12: 125013.

[164] Sun K, Ouyang H, Tian J, et al. Experimental and numerical investigations on the eccentric vortex of the cross flow fan. International Journal of Refrigeration, 2015, 50:146-155.

[165] 庞冲. 扇翼飞行器气动原理研究, [硕士学位论文]. 南京:南京航空航天大学,2015.

[166] 朱克勤,尹协远,童秉纲. 涡运动理论. 合肥:中国科学技术大学出版社,2009.1.

[167] Liu H, Tang F, Shi L, Dai L, Shen J, Liu J. The Analysis of Cavitation Flow and Pressure Pulsation of Bi-Directional Pump. Journal of Marine Science and Engineering, 2023, 11(2):268.

[168] Lu J, Lu Y, Zhang R, et al. Numerical study on hydrodynamic performance of an underwater propulsive wing propulsor. Ocean Engineering, 2023, 285: 115293.

[169] 萨拉瓦纳穆图 H I H, 罗杰斯 G F C, 科恩 H, 等. 燃气涡轮原理.6 版.北京:航空工业出版社,2015:314-315.

[170] 潘浙平. 倾转四旋翼飞行器倾转过渡走廊计算方法研究, [硕士学位论文]. 南京:南京航空航天大学,2019.

[171] 蒋海辉. 倾转四旋翼飞行器操纵策略研究, [硕士学位论文]. 南京:南京航空航天大学,2019.

[172] 周军. 航天器控制原理. 西安:西北工业大学出版社, 2001.

[173] 严卫生.鱼雷航行动力学. 西安:西北工业大学出版社, 2005.

[174] 全权.多旋翼飞行器设计与控制. 北京: 电子工业出版社, 2018.

[175] 陈丽, 段登平. 大气动/静飞行器飞行原理. 上海: 上海交通大学出版社, 2015.

[176] 郑伟, 杨跃能. 飞艇飞行力学与控制. 北京:科学出版社,2016.

[177] Javanmard E, Mansoorzadeh S, Mehr A J. A new CFD method for determination of translational added mass coefficients of an underwater vehicle. Ocean Engineering,2020,215.

[178] Faltinsen O M. Sea Loads on Ships and Offshore Structures. London: Cambridge University Press, 1990.

[179] Nuttall H. The Slow Rotation of a Circular Cylinder in a Viscous Fluid. International Journal of Engineering Science, 1965, 2(5):461-476.

[180] 王志刚. 倾转四旋翼无人机ADRC飞行控制技术研究, [博士学位论文].南京:南京航空航天大学,2020.

[181] Fossen T I. Guidance and Control of Ocean Vehicles. New York: John Wiley and Sons, Ltd, 1994.

[182] Qi D, Feng J, Li Y. Dynamic model and ADRC of a novel water-air unmanned vehicle for water entry with in-ground effect. Journal of Vibroengineering, 2016, 18(6):3743-3756.

[183] Wang J, Chen R and Lu J. Experimental and Numerical Studies on the Effect of Airflow Separation Suppression on Aerodynamic Performance of a Ducted Coaxial Propeller in Hovering. Aerospace,2023, 10(1): 1-11.

[184] 袁绪龙,朱珠. 预置舵角对高速入水弹道和流体动力的影响. 应用力学学报, 2015, 32(1): 11-17.

[185] Menter F. Zonal two equation kw turbulence models for aerodynamic flows. 23rd fluid dynamics, plasmadynamics, and lasers conference, 1993: 2906.

[186] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598-1605.

[187] 宋武超, 王聪, 魏英杰, 等. 不同头型回转体低速倾斜入水过程流场特性数值模拟. 北京理工大学学报, 2017(7): 661-671.

[188] 李永利,冯金富,齐铎,等. 航行器低速斜入水运动规律. 北京航空航天大学学报,2016,42(12): 2698-2708.

[189] Fenton JD. A Fifth-Order Stokes Theory for Steady Waves. Journal of waterway, port, coastal, and ocean engineering, 1985,111:216-234.

[190] 高正, 陈仁良.直升机飞行动力学. 北京:科学出版社, 2003.

[191] 刘世前. 现代飞机飞行动力学与控制. 上海:上海交通大学出版社, 2014.

[192] 韩京清. 一类不确定对象的扩张状态观测器. 控制与决策, 1995(1):85-88.

[193] 胡润昌,王子安,陈永亮等.基于L1自适应推力矢量型V/STOL飞行器增稳控制.航空学报,2023,44(S1):122-139.

[194] Yang Z, Rui H, Zhao Y, et al. Design of an Active Disturbance Rejection Control for Transonic Flutter Suppression. Journal of Guidance Control & Dynamics, 2017, 40(1):1–12.

[195] Hua X, Yi J Q, Fan G L, et al. Anti-crosswind Autolanding of UAVs based on Active Disturbance Rejection Control. Proceedings of Aiaa Guidance, Navigation, & Control Conference, 2013.

[196] Song S, Wang W, LuK, etal. Nonlinear attitude control using extended state observer for tilt-rotor aircraft. Proceedings of Control & Decision Conference, 2015.

[197] 王俊生, 马宏绪, 蔡文澜, 税海涛, 聂博文. 基于ADRC的小型四旋翼无人直升机控制方法研究. 弹箭与制导学报, 2008(03): 31-34+40.

[198] Zeng Z, Lyu C, Bi Y, et al. Review of hybrid aerial underwater vehicle: Cross-domain mobility and transitions control. Ocean Engineering, 2022, 248:110840.

中图分类号:

 V212.4    

馆藏号:

 2024-001-0003    

开放日期:

 2024-07-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式