题名: | 轴向柱塞泵的可靠性仿真分析及优化 |
作者: | |
学号: | SX2207061 |
保密级别: | 公开 |
语种: | chi |
学科代码: | 082300 |
学科: | 工学 - 交通运输工程 |
学生类型: | 硕士 |
学位: | 工学硕士 |
入学年份: | 2022 |
学校: | 南京航空航天大学 |
院系: | |
专业: | |
研究方向: | 适航技术与管理 |
导师姓名: | |
导师单位: | |
完成日期: | 2024-12-01 |
答辩日期: | 2025-03-12 |
外文题名: |
Reliability Simulation Analysis and Optimization of Axial Piston Pump |
关键词: | |
外文关键词: | Axial Piston Pump ; Valve Plate ; Co-simulation ; Friction and Wear ; Reliability Assessment ; Optimization |
摘要: |
轴向柱塞泵是航空航天配套液压传动系统的核心动力元件。随着高端装备中轴向柱塞泵向高转速、大流量方向发展,由磨损和泄漏引起的效率损失问题变得日益突出。轴向柱塞泵中的摩擦副磨损积累,是导致其效率下降至到寿的主要原因。轴向柱塞泵摩擦副的磨损与润滑特性、表面形貌、运行工况及几何结构等因素密切相关。这些因素不仅复杂多样,还直接关系到柱塞泵的工作效率与可靠性。针对上述问题,论文主要研究内容如下: 首先,分析了轴向柱塞泵的结构组成及运行原理;针对配流盘结构,使用图形解析法将配流盘结构参数化,建立了配流盘吸排油腔、阻尼槽等结构参数与过流面积的函数关系;建立了轴向柱塞泵容积效率模型,以容积效率为失效判定条件,分析了摩擦副参数变化对泄漏流量及容积效率的影响。 其次,分别基于AMESim和ADAMS软件建立了轴向柱塞泵的液压模型和动力学模型,其中,通过将配流盘过流面积数据文件导入AMESim配流副元件,模拟配流副实际功能; 通过FMU(Functional Mock-up Unit,功能模型单元)建立了轴向柱塞泵的机械液压联合仿真模型;模型输出的出口压力和出口流量等与理论值一致,验证了联合仿真模型的准确性;联合仿真模型输出的压力、流量等参数用于后续计算与研究。 然后,选择轴向柱塞泵中易发生磨损且泄漏流量最大的配流副作为研究对象,使用有限差分法对极坐标下的雷诺方程进行求解并得到配流副油膜压力分布,结合弹性力学方程计算得到变形分布,建立了配流副流固耦合模型;根据缸体与配流盘受力特点,综合考虑动、静压支承、热楔效应、挤压效应以及表面粗糙峰接触模型等,建立了描述油膜厚度变化的微分方程,并解出了一个周期内油膜厚度的变化曲线;通过对配流副进行润滑机理分析,获知配流副润滑方式为混合润滑,主要磨损方式为磨粒磨损;基于粘弹性磨损模型和Archard模型建立了配流副磨损模型,并提出了基于磨损楔形角更新的配流副磨损计算流程;在以上工作的基础上,进行了1000小时磨损仿真,得到配流副总楔形角随时间增长的线性退化模型,进一步计算得到泄漏流量和容积效率随时间的变化关系,根据容积效率91%的失效判定准则得到柱塞泵在该工况下的寿命为21515小时。 最后,结合本文中建立的AMESim-ADAMS轴向柱塞泵联合仿真模型、配流副流固耦合模型、油膜厚度微分方程、平面润滑磨损模型等,提出运行工况、油液属性、材料属性及表面形貌共4类12个不确定性参数,进行蒙特卡洛仿真,得到轴向柱塞泵寿命分布样本并使用两参数威布尔分布进行可靠性分析,得到其平均寿命为20925小时;考虑到通过配流盘优化设计能降低缸体对配流盘的压紧力脉动,提高最小油膜厚度,降低磨损延长柱塞泵使用寿命,以压紧力脉动率最小为主要目标,以流量脉动率最小为次要目标,基于NSGA-Ⅱ(Non-dominated Sorting Genetic Algorithm II,第二代非支配排序遗传算法)算法对配流盘7个结构参数进行双目标优化,优化后压紧力脉动率降低了51.47%,流量脉动率降低了16.33%,油膜厚度最小值提高14.61%;对优化后模型进行仿真得到轴向柱塞泵寿命样本并进行可靠性评估,优化后其寿命同样服从两参数威布尔分布,平均寿命为23832小时,比优化前提高了13.89%。 |
外摘要要: |
Axial piston pumps are the core power components of aerospace hydraulic transmission systems. As these pumps in high-end equipment are developed towards higher speeds and larger flow rates, efficiency loss due to wear and leakage has become increasingly prominent. The accumulation of wear in the friction pairs of axial piston pumps is the primary reason for their efficiency decline until the end of their service life. The wear of friction pairs in axial piston pumps is closely related to factors such as lubrication characteristics, surface topography, operating conditions, and geometric structure. These factors are not only complex and diverse but also directly affect the working efficiency and reliability of the pumps. In response to these issues, the main research contents of the paper are as follows: Firstly, the structural composition and operational principles of axial piston pumps were analyzed. For the valve plate structure, a graphic analytical method was used to parameterize its structure, establishing a functional relationship between the structure parameters of the valve plate, such as the suction and discharge chambers and damping grooves, and the flow area. This method provides the advantages of fast calculation speed and ease of subsequent design improvements for the valve plate structure. A volumetric efficiency model for the axial piston pump was established, using volumetric efficiency as the failure criterion to analyze the impact of changes in friction pair parameters on leakage flow and volumetric efficiency. Secondly, hydraulic and dynamic models of the axial piston pump were developed using AMESim and ADAMS software, respectively. By importing the valve plate flow area data files into the AMESim valve plate component, the actual function of the valve plate was simulated. A mechanical-hydraulic co-simulation model of the axial piston pump was established using Functional Mock-up Unit (FMU). The simulation results, including piston displacement and velocity, outlet pressure, and outlet flow, were consistent with theoretical values, verifying the accuracy of the co-simulation model. The pressure, flow, and clamping force of the cylinder block against the valve plate output from the co-simulation model serve as the basis for subsequent calculations. Then, the valve plate, which is prone to wear and has the largest leakage flow in the axial piston pump, was selected as the research subject. The finite difference method was used to solve the Reynolds equation in polar coordinates to obtain the pressure distribution of the oil film in the valve plate, and combining with the elasticity equation, the deformation distribution was calculated, establishing a fluid-structure interaction model for the valve plate. Considering the force characteristics of the cylinder block and valve plate, and integrating dynamic and static pressure support, thermal wedge effect, squeeze effect, and a surface asperity contact model, a differential equation describing the variation of oil film thickness was established, and the variation curve of oil film thickness over one cycle was solved. By analyzing the lubrication mechanism of the valve plate, it was found that the lubrication mode is mixed lubrication, with abrasive wear as the main wear mode. Based on viscoelastic wear model and Archard's model, a wear model for the valve plate was established, and a wear calculation process based on the updating of the wear wedge angle was proposed. Based on this work, a 1000-hour wear simulation was conducted, resulting in a linear degradation model of the total wedge angle of the valve plate over time, and further calculating the relationship between leakage flow and volumetric efficiency over time. Using a volumetric efficiency failure criterion of 91%, the service life of the pump under these conditions was determined to be 21,515 hours. Finally, combining the AMESim-ADAMS co-simulation model of the axial piston pump, the fluid-structure interaction model of the valve plate, the differential equation for oil film thickness, and the planar lubrication wear model established in the paper, 12 uncertainty parameters across four categories (operating conditions, oil properties, material properties, and surface morphology) were proposed. Monte Carlo simulation was performed to obtain the life distribution sample of the axial piston pump, and reliability analysis was conducted using a two-parameter Weibull distribution, resulting in an average life of 20,925 hours. Considering that optimizing the valve plate design can reduce the pulsation of the clamping force of the cylinder block against the valve plate, increase the minimum oil film thickness, reduce wear, and extend the service life of the pump, a dual-objective optimization of seven structural parameters of the valve plate was performed using the NSGA-II (Non-dominated Sorting Genetic Algorithm II), targeting minimal clamping force pulsation rate as the primary objective and minimal flow pulsation rate as the secondary objective. After optimization, the clamping force pulsation rate decreased by 51.47%, the flow pulsation rate decreased by 16.33%, and the minimum oil film thickness increased by 14.61%. Reliability simulation of the optimized model yielded a life sample for the axial piston pump, and reliability assessment showed the life still follows a two-parameter Weibull distribution, with an average life of 23,832 hours, representing a 13.89% improvement compared to before optimization. |
参考文献: |
[2] 刘伟. 航空柱塞泵常见故障原因与分析[J]. 航空维修与工程, 2023(09): 59-61. [3] 马纪明, 黄怡鸿, 郭健等. 液压柱塞泵运动副磨损特性研究综述[J]. 液压与气动, 2017(08): 84-94. [4] 张天霄. 液压元件的可靠性设计和可靠性灵敏度分析[D]: 吉林大学, 2014. [5] 张育洋. 基于污染磨损试验的液压柱塞泵寿命评估技术研究[D]: 西安电子科技大学, 2019. [6] 马纪明, 阮凌燕, 付永领等. 航空液压泵加速寿命试验现状及方法研究(连载2)航空液压泵典型失效模式及加速方法[J]. 液压与气动, 2015(07): 1-6. [7] 欧阳小平, 王天照, 方旭. 高速航空柱塞泵研究现状[J]. 液压与气动, 2018(02): 1-8. [10] 路甬祥. 流体传动与控制技术的历史进展与展望[J]. 机械工程学报, 2001(10): 1-9. [17] 马吉恩. 轴向柱塞泵流量脉动及配流盘优化设计研究[D]: 浙江大学, 2009. [18] 王晓晶, 陈帅, 张梦俭. 基于ADAMS和AMESim的斜盘式轴向柱塞泵联合仿真[J]. 哈尔滨理工大学学报, 2020, 25(01): 9-14. [19] 王震, 聂松林, 尹方龙等. 基于PumpLinx纯水轴向柱塞泵配流盘卸荷槽结构的仿真分析[J]. 液压与气动, 2016(02): 11-16. [20] 张毅. 基于数模融合的柱塞泵故障诊断研究[D]: 中北大学, 2023. [21] 夏毅敏, 李正辉, 谭顺辉等. 固-液-温耦合作用下油液特性对大排量柱塞泵流量脉动的影响[J]. 华南理工大学学报(自然科学版), 2023, 51(9): 44-55. [25] 郭志敏, 戴海曙, 翟江等. 基于3D空间点云模型的轴向柱塞泵配流盘过流面积计算方法[J]. 机电工程, 2024, 41(5): 886-893. [26] 王毅翔. 轴向柱塞泵配流盘阻尼槽特性分析及优化设计[D]: 浙江大学, 2014. [27] 朱志鹏, 汤永, 孙云伟等. 基于一维计算模型的斜盘式柱塞泵流动特性分析[J]. 华南理工大学学报(自然科学版), 2024, 52(2): 62-73. [28] 刘建, 刘波, 吴小翠等. 轴向柱塞泵配流副油膜润滑及结构优化研究综述[J]. 机床与液压, 2024, 52(17): 213-221. [32] Yamaguchi A. Pressure distribution on valve plate of axial plunger pumps and motors[J], 1966. [34] 许耀铭, 油膜理论与液压泵和马达的摩擦副设计[M]: 机械工业出版社,1987. [35] 那焱青, 那成烈, 李书泽等. 轴向柱塞泵配流盘液压支承力的计算[J]. 甘肃工业大学学报, 2003(02): 53-55. [36] 王彬, 周华, 杨华勇. 轴向柱塞泵平面配流副的摩擦转矩特性试验研究[J]. 浙江大学学报(工学版), 2009, 43(11): 2091-2095. [37] 侯亮, 赖伟群, 崔凯等. 轴向柱塞马达平面配流副油膜润滑特性建模及分析[J]. 华南理工大学学报(自然科学版), 2021, 49(02): 99-109. [38] 何必海, 孙健国, 叶志锋. 燃油柱塞泵滑靴副和配流副油膜计算研究[J]. 航空动力学报, 2010, 25(06): 1437-1442. [39] 李晶, 吴双伟. 轴向柱塞泵配流副楔形油膜温度特性[J]. 中国工程机械学报, 2019, 17(01): 8-14. [40] 闫伟鹏. 轴向柱塞泵配流副抗倾覆稳定性及油膜润滑特性研究[D]: 哈尔滨工业大学, 2020. [41] 陈旭斌. 轴向柱塞泵配流副低速下摩擦磨损特性研究[D]: 浙江大学, 2017. [42] 王瑞渠. 直轴斜盘式柱塞泵常见故障的排除[J]. 流体传动与控制, 2004(03): 48-50. [46] 黄平, 温诗铸. 粘弹性流体动力润滑与润滑磨损[J]. 机械工程学报, 1996(03): 35-41. [48] 杜尊令. 轴向柱塞泵效率特性分析及渐变可靠性研究[D]: 沈阳工业大学, 2022. [51] 魏莎莎, 李真. 电子元器件可靠性技术发展综述[J]. 电子产品可靠性与环境试验, 2023, 41(05): 110-115. [57] 许耀铭, 元建平. 关于可靠性技术与液压可靠性研究[J]. 液压工业, 1986(04): 12-16. [58] 许耀铭, 赵玉琢, 吴泽龙. 轴向柱塞泵缸体的强化疲劳寿命试验[J]. 液压与气动, 1986(01): 26-28. [59] 蔡文彦, 任海军, 许耀铭. 液压泵及马达的磨损模拟强化试验方法研究[J]. 液压工业, 1988(04): 44-49. [60] 张志伟. 某型号轴向柱塞泵可靠性研究[D]: 吉林大学, 2021. [62] 刘尚, 张鹏, 王一博等. 掘进机轴向柱塞泵寿命预测及可靠性评估[J]. 液压气动与密封, 2024, 44(8): 1-7. [63] 张翔宇, 许顺海, 王少萍等. 轴向柱塞泵球面配流副可靠性评估[J]. 机床与液压, 2023, 51(18): 183-191. [64] 王岩, 王晓晴, 郭生荣等. 航空柱塞泵缸体疲劳分析及寿命预测方法[J]. 北京航空航天大学学报, 2019, 45(07): 1314-1321. [65] 唐宏宾, 杨婧, 唐一. 轴向柱塞泵疲劳损伤分析及寿命预测[J]. 机床与液压, 2023, 51(16): 165-171. [66] 陈远玲, 班成周, 刘银水等. 航空柱塞泵配流副磨损模型与寿命预测[J]. 液压与气动, 2020(12): 1-7. [68] 王宇航. 斜盘式轴向柱塞泵配流盘程序化设计[D]: 兰州理工大学, 2023. [69] 李玉龙, 何永勇, 雒建斌. 航空柱塞泵关键摩擦副表面改性与性能增强[J]. 清华大学学报(自然科学版), 2021, 61(12): 1405-1422. [70] 周子韩. 复杂退化产品的多阶段统计建模与可靠性评估[D]: 西南交通大学, 2023. [71] 胡亮. 基于ADAMS和AMESim的PCY14-1B恒压变量柱塞泵联合仿真研究[D]: 兰州理工大学, 2016. [72] 牛蒙. 轴向柱塞泵配流副油膜形状算法与温度特性研究[D]: 太原科技大学, 2023. [74] 胡骁, 王少萍, 韩磊. 轴向柱塞泵配流副动态压力分布建模与仿真[J]. 液压气动与密封, 2012, 32(08): 68-71. [75] 胡纪滨, 邹云飞, 李小金等. 弹性变形对轴向柱塞泵配流副润滑特性的影响[J]. 农业工程学报, 2009, 25(12): 114-118. [76] 韩浩, 安高成, 仉志强等. 斜盘式轴向柱塞泵滑靴副油膜挤压效应研究[J]. 太原科技大学学报, 2023, 44(05): 452-457. [77] 温诗铸, 黄平, 田煜等, 摩擦学原理 第5版[M]: 北京:清华大学出版社,2018: 484. [78] 雒建斌, 温诗铸, 史兵. 润滑的状态转化[J]. 材料研究学报, 1997(02): 120-126. [79] 白敏丽, 刘美, 王宇等. 薄膜润滑的结构和摩擦特性的分子动力学模拟[J]. 润滑与密封, 2017, 42(04): 12-16. [80] 范学增. 配流副油膜厚度对轴向柱塞泵使用寿命的影响[J]. 天津职业院校联合学报, 2010, 12(05): 6-9. [81] 牛蒙, 仉志强, 张晓等. 轴向柱塞泵配流副楔形角和方位角求解算法研究[J]. 机床与液压, 2024, 52(08): 19-23. [82] 员海涛. 轴向柱塞泵配流副楔形角与方位角研究[D]: 太原科技大学, 2021. [83] 杜壮壮, 马保吉, 刘彬. 基于加速退化的柱塞泵可靠性与寿命评估[J]. 船舶工程, 2023, 45(09): 70-78. [84] 于跃斌, 王文生, 金属材料力学性能检测技术与应用[M]: 机械工业出版社,2024. [85] 郭锐, 石玉, 赵静一等, 一种新型的液压泵加速退化试验及可靠性评估方法研究[M]. 中国机械工程学会流体传动与控制分会. 中国浙江杭州, 2016: 7. [86] 孔青松, 张红涛, 焦文华. 柱塞泵配流盘磨损分析及优化[J]. 液压气动与密封, 2023, 43(04): 109-112. |
中图分类号: | V245.1 |
馆藏号: | 2025-007-0162 |
开放日期: | 2025-10-04 |