- 无标题文档

中文题名:

 AISI 9310钢淬硬层超声振动辅助磨削温度与砂轮磨损研究    

姓名:

 黄强    

学号:

 SX2005103    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0802    

学科名称:

 工学 - 机械工程    

学生类型:

 硕士    

学位:

 工学硕士    

入学年份:

 2020    

学校:

 南京航空航天大学    

院系:

 机电学院    

专业:

 机械工程    

研究方向:

 高效精密加工技术    

第一导师姓名:

 丁文锋    

第一导师单位:

 机电学院    

第二导师姓名:

 赵彪    

完成日期:

 2023-03-27    

答辩日期:

 2023-03-17    

外文题名:

 

Research on grinding temperature and tool wear during ultrasonic vibration-assisted grinding of quench-hardened layer of AISI 9310 steel

    

中文关键词:

 AISI 9310齿轮钢 ; 超声振动辅助磨削 ; 磨削性能 ; 磨削温度 ; 砂轮磨损     

外文关键词:

 AISI 9310 gear steel ; Ultrasonic vibration assisted grinding ; Grinding performance ; Grinding temperature field ; Tool wear     

中文摘要:

具有高淬硬性和强淬透性的AISI 9310齿轮钢(相当于10CrNi3Mo合金钢)是直升机传动齿轮的核心材料。磨齿通常作为齿轮制造工艺中的最终加工工序,承担着消除热处理工艺后的变形和提高齿轮形状精度与表面完整性的关键作用。由于齿轮钢淬硬表面硬度大(HRC55以上),使得磨削过程力大、温度高,长期存在加工表面易磨削烧伤、砂轮磨损严重、加工效率和表面质量难以保证的瓶颈难题。现阶段,超声振动辅助磨削技术已在航空航天高强韧和高硬脆难加工材料构件精密加工中得到快速发展,并探索了超声振动辅助磨削加工机理。但是,目前有关典型齿轮钢淬硬层的超声振动辅助磨削技术研究尚处于起步阶段,严重制约了超声振动辅助技术在齿轮磨削领域的进一步应用。有鉴于此,本文开展了AISI 9310钢淬硬层超声振动辅助磨削温度与砂轮磨损研究,对AISI 9310齿轮钢淬硬层的超声振动辅助磨削性能、磨削温度场预测与磨削烧伤、砂轮磨损控制进行了研究。

主要创新工作及成果如下:

(1)对比分析了AISI 9310齿轮钢淬硬层普通磨削和超声磨削的加工特性,从磨削力、磨削温度、表面粗糙度等方面综合评价了超声磨削的性能优势。研究发现:相比于普通磨削,超声磨削可以大幅降低磨削力(约40%)、磨削温度(约50%)以及表面粗糙度值(约40%),原因归结于超声磨削的断续切削行为增大了单颗磨粒厚度(约25.4%);同时,超声振动下的软化效应有助于降低材料应变能,改善材料磨削加工性。

(2)构建了评价超声强化性能的分离系数模型与基于超声磨削切屑体积分布的矩-三角形热源分布模型,更准确地预测了超声振动条件下的磨削温度分布,与实验结果相符;在此基础上,提出了超声磨削的工艺策略。研究发现:结合传统三角形热源和超声磨削加工特征构建的矩-三角形热源分布模型能够更好地预测磨削温度,平均预测误差为7.13%,相比于三角形热源,预测精度提升了7.33%。提出了通过提高超声振幅、减少磨削切深和工件进给速度的工艺策略,能够提升超声磨削加工性能,有效降低磨削热的产生。

(3)明确了超声磨削过程中砂轮磨损的演变规律,阐明了砂轮磨粒磨损机理与演变行为,揭示了超声磨削表面创成机制。研究表明:超声磨削过程中,砂轮磨粒在多角度交变载荷作用下,呈现优异的自锐性能和排屑能力,砂轮锋利度得以长时稳定保持;相比普通磨削过程,超声磨削过程的稳定磨削阶段长23.07%。

研究成果有助于促进超声磨削技术在齿轮钢材料高质高效磨削加工中的应用,对于提升我国航空传动系统齿轮及难加工零件的磨削加工技术水平具有重要意义。

外文摘要:

AISI 9310 gear steel represents a difficult-to-machine material with high hardenability and hardenability, which is the core material for key transmission gears of helicopters. In gear processing and manufacturing technology, grinding is usually used as the final processing of gears, which plays a key role in eliminating deformation after the heat treatment process and improving the shape accuracy of gears. However, due to the high hardness of the hardened surface of gear steel, there are processing problems such as high grinding forces, easy grinding burn on the machined surface and easy wear of tool, which make it difficult to guarantee the machining efficiency and surface quality. At present, ultrasonic vibration assisted grinding (UVAG) machining technology has been rapidly developed and applied in the manufacturing of difficult-to-machine materials with high toughness or hard brittle. The mechanism of UVAG has been studied superficially. The research on UVAG characteristics of the hardened layer of gear steel is inadequate, and the lack of in-depth research on grindability, prediction of grinding temperature filed, burn prevention and wear control of grinding wheel has seriously restricted the application of ultrasound-assisted technology in gear grinding.

For these abovementioned reasons, this paper carried out a research on the ultrasonic vibration assisted grinding temperature and grinding wheel wear of the quench-hardened layer of AISI 9310 steel. The ultrasonic vibration assisted grinding performance, grinding temperature field prediction, grinding burn and grinding wheel wear control of AISI 9310 gear steel were investigated.

The main research work and results are as follows:

(1) Comparative experiment of convention grinding and UVAG processes for the quench-hardened layer of AISI 9310 hardened gear steel was conducted to evaluate the performance advantages of UVAG. As results shown, with the application of ultrasonic vibration, UVAG reduces grinding forces by about 40%, grinding temperatures by 50% and surface roughness by 40%. It is mainly due to the fact that the interrupted cutting behavior increases the maximum undeformed chip thickness by 25.4%, and repeatedly irons the workpiece surface, while the ultrasonic softening effect and ultrasonic friction reduction effect reduce the material strain energy.

(2) Base on the separation coefficient model and the distribution of UVAG chip volume, the Moment-Triangle (MT) heat source distribution model was established, Evaluation of ultrasonic strengthening performance and accurate prediction of grinding temperature. As results shown, the moment-triangle heat source distribution model constructed by combining the conventional triangular heat source and ultrasonic grinding processing characteristics could predict the grinding temperature better, with the maximum grinding temperature prediction error ranging from 1.97% to 14.74% and the average prediction error of 7.13%. On this basis, the process strategy of increasing the ultrasonic amplitude, reducing the grinding depth and workpiece feed rate was proposed, which can improve the ultrasonic grinding processing performance and effectively reduce the grinding heat generation.

(3) The evolution of grinding wheel wear during ultrasonic grinding was revealed, the wear mechanism and evolution behavior of grinding wheel grains were elucidated, and the surface creation mechanism of ultrasonic grinding was revealed. The study showed that the grinding wheel grains showed excellent self-sharpening performance and chip removal ability under multi-angle alternating load during UVAG, and the grinding wheel sharpness was maintained stably for a long time. The stable grinding phase of ultrasonic grinding process was 23.07% longer than that of ordinary grinding process.

The research achievements were conductive to accelerate the application of ultrasonic vibration assisted grinding in high-efficiency grinding of gear steel materials, and then promote the development of grinding technology of aviation transmission gears and difficult-to-machine parts.

参考文献:

[1] 肖蔓. H160直升机及阿拉诺涡轴发动机发展. 航空动力, 2022,2:21–23.

[2] 赵宁, 李旺, 郭辉, 等. 某型直升机同轴面齿轮分扭传动均载研究. 机械传动, 2020,44(5):10–17.

[3] 王俊, 潘文斌. 直升机传动系统面齿轮传动技术的发展. 航空动力, 2018,05:44–46.

[4] 朱鹏飞, 严宏志, 陈志, 等. 渗碳齿轮齿根喷丸强化研究现状与展望. 表面技术, 2021,50(1):10–27.

[5] Krauss G. Tempering of lath martensite in low and medium carbon steels: assessment and challenges. Steel Research International, 2017,88(10):1700038.

[6] 梁志强, 黄迪青, 周天丰, 等. 齿轮钢18Cr2Ni4WA磨削烧伤实验及仿真预测研究. 兵工学报, 2017,38(10):1995–2001.

[7] 王龙, 田欣利, 刘谦, 等. 基于微晶刚玉磨粒切削的20CrMnTi齿轮钢磨削机理研究. 制造技术与机床, 2017,6:80–84.

[8] 付海峰, 李俏, 徐跃明. 重载齿轮热处理及应用. 金属热处理, 2020,45(3):178–185.

[9] Argoud V, Morel F, Pessard E, et al. Fatigue behaviour of gear teeth made of case hardened steel: from competing mechanisms to lifetime variability. Procedia Structural Integrity, 2019,19:719–728.

[10] Li W, Liu B S. Experimental investigation on the effect of shot peening on contact fatigue strength for carburized and quenched gears. International Journal of Fatigue, 2018,106:103–113.

[11] 杨英波, 李文辉, 李东祥, 等. 齿轮类零件滚磨光整加工技术现状及发展思考. 表面技术, 2021,50(12):1–16.

[12] Sales W F, Schoop J, Da Silva L R, et al. A review of surface integrity in machining of hardened steels. Journal of Manufacturing Processes, 2020,58:136–162.

[13] 唐鑫, 朱如鹏, 廖梅军, 等.第三代航空齿轮钢圆柱齿轮弯曲疲劳强度性能测试分析. 航空动力学报, 2021,36(8):1756–1764.

[14] 戴建科, 韩顺, 厉勇, 等. 航空齿轮钢C69高温渗碳后的组织性能. 金属热处理, 2022,47(4):219–225.

[15] 陈晖, 周细应. 汽车齿轮钢的研究进展. 材料科学与工程学报, 2011,29(3):478–482.

[16] 张宇, 梁国星, 张浩, 等. CBN 砂轮对 GCr15 钢的磨削硬化试验研究. 机电工程, 2020,37(8):926–930.

[17] Wen J, Zhou W H, Tang J Y, et al. Residual stress evolution for tooth double-flank by gear form grinding. Journal of Manufacturing Processes, 2022,77:754–769.

[18] 樊建勋. AerMet100超高强度钢低应力无烧蚀磨削技术研究[硕士学位论文]. 西安: 西安电子科技大学, 2014.

[19] 梁志强, 黄迪, 等. 齿轮钢18Cr2Ni4WA磨削烧伤实验及仿真预测研究. 兵工学报, 2017,38(10):1995–2001.

[20] 乔治, 梁志强. 齿轮钢30CrMnTi磨削强化试验. 中国表面工程, 2017,30(1):26–32.

[21] 孔德群, 孔新建. 18CrNiMo7-6钢齿轮磨削烧伤裂纹分析. 金属加工(热加工), 2016,19:20–24.

[22] Tian Y B, Li L G, Fan S, et al. A novel high-shear and low-pressure grinding method using specially developed abrasive tools. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020,235:166–172.

[23] 曹凤国, 张勤俭. 超声加工技术的研究现状及其发展趋势. 电加工与模具, 2005,1: 25–31.

[24] 郑书友, 冯平法, 徐西鹏. 旋转超声加工技术研究进展. 清华大学学报: 自然科学版, 2009,49(11):1799–1804.

[25] Wu Y B, Fan Y F, Kato M. A feasibility study of microscale fabrication by ultrasonic-shoe centerless grinding. Precision Engineering, 2006,30:201–210.

[26] 肖永军, 杨卫平, 李尧忠, 等. 新型超声旋转磨削装置的研制. 机械工程师, 2007,3:97–99.

[27] 李华, 李征. 基于有限元的超声振动内圆磨削系统的主轴设计与研究. 制造技术与机床, 2008,3:135–139.

[28] Tawakoli T, Azarhoushang B. Influence of ultrasonic vibrations on dry grinding of soft steel. International Journal of Machine Tools and Manufacture, 2008,48:1585–1591.

[29] Liang Z Q, Wang X B, Wu Y B, et al. An investigation on wear mechanism of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire. Journal of Materials Processing Technology, 2012,212:868–876.

[30] Zhao B, Chang B Q, Wang X B, et al. System design and experimental research on ultrasonic assisted elliptical vibration grinding of Nano-ZrO2 ceramics. Ceramics International, 2019,45:14865–24877.

[31] Cao Y, Zhu Y J, Ding W F, et al. Vibration coupling effects and machining behavior of ultrasonic vibration plate device for creep-feed grinding of Inconel 718 nickel-based superalloy. Chinese Journal of Aeronautics, 2022,35(2):332–345.

[32] Bhaduri D, Soo S L, Aspinwall D K, et al. Ultrasonic assisted creep feed grinding of gamma titanium aluminide using conventional and superabrasive wheels. CIRP Annals - Manufacturing Technology, 2017,66(1):341–344.

[33] Bhaduri D, Soo S L, Novovic D, et al. Ultrasonic assisted creep feed grinding of Inconel 718. Procedia CIRP, 2013,6:615–620.

[34] Nik M G, Movahhedy M R, Akbari J. Ultrasonic-assisted grinding of Ti6Al4V alloy. Procedia CIRP, 2012,1:353–358.

[35] Cao Y, Zhu Y J, Li H N, et al. Development and performance of a novel ultrasonic vibration plate sonotrode for grinding. Journal of Manufacturing Processes, 2020,57:171–186.

[36] Zheng F F, Kang R K, Dong Z G, et al. A theoretical and experimental investigation on ultrasonic assisted grinding from the single-grain aspect. International Journal of Mechanical Sciences, 2018,148:667–675.

[37] 向道辉, 牛肖肖, 李章东, 等. 超声辅助磨削淬硬42CrMo钢表面质量试验研究. 河南理工大学学报: 自然科学版, 2020,39(5):73–79.

[38] Akbari J, Borzoie H,Mamduhi M H. Study on ultrasonic vibration effects on grinding process of alumina ceramic. International Journal of Mechanical and Mechatronics Engineering, 2008,2(5):722–726.

[39] Wang Y, Lin B, Wang S L, et al. Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing. International Journal of Machine Tools and Manufacture, 2014,77:66–73.

[40] Yang Z C,Zhu L D,Lin B,et al. The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding. Ceramics International, 2019,45:8873–8889.

[41] Gao T, Zhang X P, Li C H, et al. Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding. Journal of Manufacturing Processes, 2020,51:44–61.

[42] Jaeger J C. Moving source of heat and temperature at sliding contacts. Proceeding Royal Social, New South Wales, 1942,76:203–224

[43] Zhang Z Y, Shang W, Ding H H, et al. Thermal model and temperature field in rail grinding process based on a moving heat source. Applied Thermal Engineering, 2016,106:855–864.

[44] Hou Z B, Ranga K. On the mechanics of the grinding process – Part I. Stochastic nature of the grinding process, International Journal of Machine Tools and Manufacture, 2003,43(15):1579–1593.

[45] Shih A J, Tai B L, Zhang L H, et al. Prediction of bone grinding temperature in skull base neurosurgery, CIRP Annals - Manufacturing Technology, 2012,61(1):307–310.

[46] Gonzales J L, Monreal L. Efficient temperature field evaluation in wet surface grinding for arbitrary heat flux profile, Journal of Engineering Mathematics, 2019,116:101–122.

[47] Dogra M, Sharma V S, Dureja J S, et al. Environment-friendly technological advancements to enhance the sustainability in surface grinding - A review. Journal of Cleaner Production, 2018,197(1):218–231.

[48] Rowe W B. Temperatures in grinding - a review. Journal of Manufacturing Science and Engineering, 2017,139(12):121001.

[49] Zhang L, Rowe W B. Study of convective heat transfer in grinding applied to tool carbide. Journal of Manufacturing Science and Engineering, 2020,142(2):21001.

[50] Rowe W B. Conical hydrostatic journal bearings for high speeds. Proceedings of the Institution of Mechanical Engineers, 2021,235(4):808–819.

[51] Jin T, Stephenson D J. Analysis of grinding chip temperature and energy partitioning in High Efficiency Deep Grinding. Proceeding on Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture, 2006,220(5):615–625.

[52] Morgan M N, Jackson A R, Wu H, et al. Optimisation of fluid application in grinding. CIRP Annals - Manufacturing Technology, 2008,57(1):363–366.

[53] Morgan M N, Rowe W B. Implementation of thermal models in grinding. Key Engineering Materials, 2007,329:3–8.

[54] Cooper W L, Lavine A S. Grinding process size effect and kinematics numerical analysis. Journal of Manufacturing Science and Engineering, 2000,122(1):59–69.

[55] Ramesh K, Huang H, Yin L. Analytical and experimental investigation of coolant velocity in high speed grinding. International Journal of Machine Tools and Manufacture, 2004,44(10):45–51.

[56] Wang L, Qin Y, Liu Z, et al. Computer simulation of a workpiece temperature field during the grinding process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal Engineering Manufacture, 2003,217(7):953–959.

[57] Jin T, Rowe W B, McCormack D. Temperatures in deep grinding of finite workpieces. International Journal of Machine Tools and Manufacture, 2002,42(1):53–59.

[58] Jin T, Cai G Q. Analytical thermal models of oblique moving heat source for deep grinding and cutting. Journal Manufacture Science Engineers, 2000,123(2):185–190.

[59] Shafto G R. Creep-feed grinding. [Dissertation], Bristol: University of Bristol, 1975.

[60] 毛聪. 平面磨削温度场及热损伤的研究[博士学位论文]. 长沙: 湖南大学, 2008.

[61] 苗情. 微晶刚玉砂轮缓进深切磨削镍基单晶合金涡轮叶片榫齿研究[博士学位论文]. 南京: 南京航空航天大学, 2020.

[62] 李德溥, 李志奎. 颗粒增强铝基复合材料磨削加工表面质量与磨削力研究. 现代制造工程, 2009,09:93–95.

[63] 董志刚, 马槐遥, 康仁科, 等. SiC_f/SiC复合材料超声辅助干式侧磨砂轮磨损研究. 机械工程学报, 2022,58(15):134–143.

[64] 张曦, 李本凯, 丁文锋. 钎焊CBN砂轮与陶瓷CBN砂轮磨削粉末冶金高温合金的加工性能对比研究. 金刚石与磨料磨具工程, 2021,41(4):64–71.

[65] 朱烨均, 丁文锋, 赵彪, 等. 面向航空发动机核心零部件高质高效磨削的砂轮自锐技术研究进展. 金属加工(冷加工), 2022,10:1–12.

[66] Zhao B, Xiao G D, Ding W F, et al. Effect of grain contents of a single-aggregated cubic boron nitride grain on material removal mechanism during Ti–6Al–4V alloy grinding. Ceramics International, 2020,46:17666–17674.

[67] Shen JY, Wang J Q, Jiang B, et al. Study on wear of diamond wheel in ultrasonic vibration-assisted grinding ceramic. Wear, 2015,332:788–793.

[68] Bhaduri D, Soo S L, Novovic D, et al. Ultrasonic assisted creep feed grinding of Inconel 718. Procedia CIRP, 2013,6:615–620.

[69] Liang Z Q, Wang X B, Wu Y B, et al. An investigation on wear mechanism of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire. Journal of Materials Processing Technology, 2012,212:868–876.

[70] Xiang D H, Zhou Z K, Zhou Z Y, et al. Abrasive wear of a single CBN grain in ultrasonic-assisted high-speed grinding. International Journal of Advanced Manufacturing Technology, 2018,98:67–75.

[71] Cao Y, Yin J F, Ding W F, et al. Alumina abrasive wheel wear in ultrasonic vibration-assisted creep-feed grinding of Inconel 718 nickel-based superalloy. Journal of Materials Processing Technology, 2021,297:117241.

[72] Jiang T T, Zhou W H, Tang J Y, et al. Constitutive modelling of AISI 9310 alloy steel and numerical calculation of residual stress after shot peening. International Journal of Impact Engineering, 2022,166:104235.

[73] Cao Y, Zhao B, Ding W F, et al. Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform in the grinding of particulate-reinforced titanium matrix composites. Frontiers of Mechanical Engineering, 2023,18(1):1–14.

[74] 陈凯. CSS-42L合金钢的磨削加工性研究[硕士学位论文]. 南京: 南京航空航天大学, 2013.

[75] 任敬心, 华定安. 磨削原理. 北京: 电子工业出版社, 2011.

[76] Shi Z, Elfizy A, Attia H. Deep profiled slot grinding on a nickel-based alloy with electroplated CBN wheels. Advanced Materials Research, 2016,1136:3–8.

[77] Qiu Y T, Zhao B, Cao Y, et al. On the grinding performance of alumina wheels in ultrasonic vibration–assisted grinding of hardened GCr15 steel. International Journal of Advanced Manufacturing Technology, 2022,120:1695–1706.

[78] Wu B F, Cao Y, Zhao J S, et al. The effect of superimposed ultrasonic vibration on tensile behavior of 6061-T6 aluminum alloy. International Journal of Advanced Manufacturing Technology, 2021,116:1842–1854.

[79] Chen J B, Fang Q H, Wang C C. Theoretical study on brittle ductile transition behavior in elliptical ultrasonic assisted grinding of hard brittle materials. Precision Engineering, 2016,46:104–117.

[80] Pahlitzsch G, Helmerdig H. Determination and significance of chip thickness in grinding. Workshop Technology, 1943,12:397–401.

[81] Nadolny K, Kap?onek W. The effect of wear phenomena of grinding wheels with sol-gel alumina on chip formation during internal cylindrical plunge grinding of 100Cr6 steel. International Journal of Advanced Manufacturing Technology, 2016,87:501–517.

[82] 邱雨桐. 基于工件超声振动的淬硬钢磨削加工及表面形成研究[硕士学位论文]. 南京: 南京航空航天大学, 2022.

[83] 张洪丽. 超声振动辅助磨削技术及机理研究[博士学位论文]. 济南: 山东大学, 2007.

[84] Ghosh S, Chattopadhyay A, Paul S. Modelling of specific energy requirement during high-efficiency deep grinding. International Journal of Machine Tools and Manufacture, 2008,48(11):1242–1253.

[85] Singh V, Rao P V, S Ghosh. Development of specific grinding energy model. International Journal of Machine Tools and Manufacture, 2012,60:1–13.

[86] Qian N, Ding W F, Zhu Y J. Comparative investigation on grindability of K4125 and Inconel718 nickel-based superalloys. International Journal of Advanced Manufacturing Technology, 2018,97:1649–1661.

[87] Xu X P, Malkin S. Comparison of methods to measure grinding temperatures. Journal of Manufacturing Science and Engineering, 2001,123:195.

[88] 杨长勇, 徐九华, 顾珅珅, 等. 陶瓷CBN砂轮磨削镍基铸造高温合金K418磨削力研究. 机械科学与技术, 2014,33(5):657–661.

[89] Cao Y, Ding W F, Zhao B, et al. Effect of intermittent cutting behavior on the ultrasonic vibration-assisted grinding performance of Inconel718 nickel-based superalloy. Precision Engineering, 2022,78:248–260.

[90] 金滩, 易军. 高速高效磨削传热过程建模与数值分析方法. 北京: 机械工业出版社, 2006.

[91] 戴晨伟. 单层钎焊超硬磨料砂轮地貌演变与磨粒切厚分布研究[博士学位论文]. 南京: 南京航空航天大学, 2017.

[92] 刘立飞. SiC陶瓷非球面磨削砂轮磨损及其对面形误差影响研究[博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2015.

[93] Qian N, Fu Y C, Jiang F, et al. CBN grain wear during eco-benign grinding of nickel-based superalloy with oscillating heat pipe abrasive wheel. Ceramics International, 2022,48:9262–9701.

[94] Wu H, Yao Z Q. Force modeling for 2D freeform grinding with infinitesimal method. Journal of Manufacturing Processes, 2021,70:108–120.

[95] Hou Z B, Komanduri R. On the mechanics of the grinding process – Part I. Stochastic nature of the grinding process. International Journal of Machine Tools and Manufacture, 2003,43:1579–1593.

[96] Doman D A, Warkentin A, Bauer R. A survey of recent grinding wheel topography models. International Journal of Machine Tools and Manufacture, 2006,46:343–352.

[97] Jamshidi H, Gurtan M, Budak E. Identification of active number of grits and its effects on mechanics and dynamics of abrasive processes. Journal of Materials Processing Technology, 2019,273:116239.

[98] Huang Y, Wu Y, Xiao G J, et al. Analysis of abrasive belt wear effect on residual stress distribution on a grinding surface. Wear, 2021,486–487:204113.

中图分类号:

 TG580    

馆藏号:

 2023-005-0225    

开放日期:

 2023-09-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式